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Abstract

The performance of thresholding-based methods for speech enhancement largely depends upon the estimation of
the exact threshold value. In this paper, a new thresholding-based speech enhancement approach, where the
threshold is statistically determined using the Teager energy-operated wavelet packet (WP) coefficients of noisy
speech, is proposed. The threshold thus obtained is applied to the WP coefficients of the noisy speech by employing a
semisoft thresholding function in order to obtain an enhanced speech. A number of simulations were carried out in
the presence of white, car, pink, and multi-talker babble noises to evaluate the performance of the proposed method.
Standard objective measures as well as subjective evaluations show that the proposed method is capable of
outperforming the existing state-of-the-art thresholding-based speech enhancement approaches for noisy speech of
high as well as low levels of SNR.

1 Introduction
Enhancement of noisy speech has been an important
problem and has a broad range of applications, such as
mobile communications, speech coding, and recognition
and hearing aid devices [1]. The performance of such
applications operating in noisy environments is highly
dependent on the noise reduction techniques employed
therein.
Various speech enhancement methods have been

reported in the literature describing the know-how to
solve the problem of noise reduction in speech enhance-
ment methods. Speech enhancement methods can be
generally divided into several categories based on their
domains of operation, namely time domain, frequency
domain, and time-frequency domain. Time domain meth-
ods include the subspace approach [2], frequency domain
methods include short-time Fourier transform (STFT)-
based spectral subtraction [3-6], minimum mean square
error (MMSE) estimator [7-11] and Wiener filtering
[12-14], and time frequency-domain methods involve
the employment of the family of wavelet [15-26]. All of
the methods have their own advantages and drawbacks.
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In the MMSE estimator [7-11], the frequency spectrum
of the noisy speech is modified to reduce the noise from
noisy speech in the frequency domain. The spectral sub-
traction method [3-6] is simple and attempts to estimate
the spectral amplitude of the clean speech by subtracting
an estimate of the noise spectral amplitude from that of
the observed noisy speech. Finally, the estimated ampli-
tude is combined with the phase of the noisy speech to
produce the desired estimate of the clean speech STFT.
In the Wiener filter approach [12-14], the estimator of the
clean speech STFT is simply the MMSE estimator when
considering Gaussian-distributed clean speech and noise.
In that case, the phase of the resulting estimate turns out
to be that of the noisy speech. The spectral subtraction fil-
ter uses the instantaneous spectra of the noisy signal and
the running average (time-averaged spectra) of the noise,
whereas the Wiener filter is based on the ensemble aver-
age spectra of the signal and noise. Although the spectral
subtraction method provides a trade-off between speech
distortion and residual noise to some extent, its major
drawback is the perceptually annoying musical nature of
the residual noise characterized by tones at different fre-
quencies that randomly appear and disappear. One of the
major problems of the Wiener filter-based method is the
requirement of obtaining clean speech statistics necessary
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for its implementation. The use of Wiener filter in speech
enhancement generally introduces little speech distortion;
however, as for the spectral subtraction approach, the
speech enhanced based on the Wiener filter is also char-
acterized by residual musical noises. Among the speech
enhancementmethods using time-frequency analyses, the
use of nonlinear techniques based on discrete wavelet
transform (DWT) [15-26] is a superior alternative to the
methods using STFT-based analyses, such as spectral sub-
traction and Wiener filtering. In the DWT, the fixed
bandwidth of the STFT is replaced with one that is pro-
portional to frequency that allows better time resolution
at high frequencies than the STFT. Here, low frequencies
are examined with low temporal resolution while high fre-
quencies are observed with greater temporal resolution.
Thus, the DWT gains more attractiveness in representing
and preserving the signal energy in the presence of noise
that needs to be removed in the speech enhancement pro-
cess. Since the DWT-based speech enhancementmethods
exploit the superior frequency localization property of
the DWT, they have more capability of reducing musical
noise, thus achieving better noise reduction performance
in terms of quality as well as intelligibility.
The main challenge in speech enhancement approaches

based on the thresholding of the DWT coefficients of
the noisy speech is the estimation of a threshold value
that marks a difference between the DWT coefficients
of noise and that of clean speech. Then, by using the
threshold, designing a thresholding scheme to minimize
the effect of DWT coefficients corresponding to the noise
is another difficult task considering the fact that con-
ventional DWT-based speech enhancement approaches
exhibit a satisfactory performance only at a relatively high
signal-to-noise ratio (SNR). For zero-mean, normally dis-
tributed white noise, Donoho and Johnstone proposed
the Universal threshold-based method for enhancing cor-
rupted speech [19,20]. For noisy speech, applying a unique
threshold for all the DWT coefficients irrespective of the
speech and silence frames may suppress noise to some
extent, but it may also remove unvoiced speech frames,
thus degrading the quality of the enhanced speech. The
Teager energy operator (TEO) proposed by Kaiser [27]
is employed to compute a threshold value that is used
to threshold the wavelet packet coefficients of the noisy

speech [18,28,29]. In particular, in the wavelet packet
filtering (WPF) method [18], a time-adaptive threshold
value is computed and an absolute offset parameter is
used to distinguish speech frames from the noise ones.
Thus, the WPF method suffers from an over-thresholding
problem if the speech signal is contaminated by just
slight noises. Statistical modeling is another approach
of thresholding-based speech enhancement, where the
threshold of wavelet packet coefficients is determined
using the similarity distances between the probability dis-
tributions of the signals [17].
In this paper, we develop a new speech enhancement

method based on thresholding in the wavelet packet
domain. Since TEO is a popular way to estimate the energy
of a band-limited signal, instead of direct employment of
the TEO on the noisy speech, we apply the TEO on the
wavelet packet (WP) coefficients of the noisy speech (as
for [18,28,29]), but we propose a statistical modeling of the
Teager energy (TE)-operated WP coefficients. By exploit-
ing the symmetric Kullback-Leibler (SKL) divergence, we
then determine an appropriate threshold with respect to
speech and silent subbands. The threshold thus obtained
is finally employed in a semisoft thresholding function for
obtaining an enhanced speech.

2 Proposedmethod
The block diagram of our proposed system is shown in
Figure 1. It is seen from Figure 1 that WP transform is
first applied to each input speech frame. Then, the WP
coefficients are subject to Teager energy approximation
with a view to determine a threshold value for performing
thresholding operation in the WP domain. On threshold-
ing, an enhanced speech is obtained via inverse wavelet
packet (IWP) transform.

2.1 Wavelet packet analysis
A method based on the wavelet packet decomposition is
a generalization of the wavelet transform-based decom-
position process that offers a richer range of probabilities
for the analysis of signals, namely speech. In the orthog-
onal wavelet decomposition procedure, the generic step
splits a speech signal into sets of approximation and detail
coefficients. The set of approximation coefficients is then
itself split into a second-level approximation and detail

Semisoft
Thresholding

Figure 1 Block diagram of the proposedmethod.
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coefficients, successive details are never reanalyzed, and
the process is repeated. Each level of decomposition is
calculated by passing only the previous wavelet approxi-
mation coefficients through discrete-time low- and high-
pass quadrature mirror filters. Mallat algorithm is one
of the efficient ways to construct the DWT by iterat-
ing a two-channel perfect reconstruction filter bank over
the low-pass scaling function branch [30]. However, this
algorithm results in a logarithmic frequency resolution,
which does not work well for all signals. In order to over-
come the drawback as mentioned above, it is desirable to
iterate the high-pass wavelet branch of the Mallat algo-
rithm tree as well as the low-pass scaling function branch.
Such a wavelet decomposition produced by these arbitrary
subband trees is known as WP decomposition.
In the WP decomposition, both the detail and approx-

imation coefficients are decomposed to create the full
binary tree. For a given orthogonal wavelet function,
a library of wavelet packet bases is generated. Each of
these bases offers a particular way of coding signals, pre-
serving global energy and reconstructing exact features.
It is interesting to find an optimal decomposition with
respect to a convenient criterion, computable by an effi-
cient algorithm. Simple and efficient algorithms exist for
both wavelet packet decomposition and optimal decom-
position selection. Functions verifying an additivity-type
property are well suited for efficient searching of binary
tree structures and the fundamental splitting. Classi-
cal entropy-based criteria match these conditions and
describe information-related properties for an accurate
representation of a given signal. In particular, the best
basis algorithm by Coifman and Wickerhauser finds a
set of bases that provide the most desirable represen-
tation of the data relative to a particular cost function
(e.g., entropy) [31].
In DWT decomposition, by the restriction of

Heisenberg’s uncertainty principle, the spatial resolution
and spectral resolution of high-frequency band become
poor, thus limiting the application of DWT. In particu-
lar, there are some problems with the basic DWT-based
thresholding method when it is applied to noisy speech
for the purpose of enhancement. An important short-
coming is the shrinkage of the unvoiced frames of speech
which contain many noise-like speech components lead-
ing to a degraded speech quality. On the other hand, in
WP decomposition, since both the approximation and
the detail coefficients are decomposed into two parts at
each level of decomposition, a complete binary tree with
superior frequency localization can be achieved. Thus, in
the context of noisy speech enhancement, this particular
feature of theWP decomposition provides better discrim-
inability of speech coefficients among those of the noise
and is indeed useful for enhancing speech in the presence
of noise.

For a j-level WP transform, the noisy speech signal y[n]
with frame lengthN is decomposed into 2j subbands. The
mth WP coefficient of the kth subband is expressed as

Wj
k,m = WP[y[n] , j] , n = 1, . . .N , (1)

wherem = 1, . . . ,N/2j and k = 1, . . . , 2j.

2.2 Teager energy approximation
The continuous form of the TEO [27] is given as

�c[ y(t)]= (
d
dt

y(t))2 − y(t)
d2

dt2
y(t), (2)

where �c[.] and y(t) represent the continuous TEO and
a continuous signal, respectively. For a given bandlim-
ited discrete signal y[n], the discrete-time TEO can be
approximated by

�d ( y[n] ) = y[n]2 − y[n + 1] y[n − 1] . (3)

The discrete-time TEO is nearly instantaneous since
only three samples are required for the energy compu-
tation at each time instant as shown in (3). Due to this
excellent time resolution, the output of a TEO provides
us with the ability to capture the energy fluctuations and
hence gives an estimate of the energy required to generate
the signal [18,27-29,32-35].
In the context of the noisy speech enhancement by

thresholding via WP analysis, the threshold must be
adapted over time since speech is not always present in the
signal. It is expected that the threshold should be larger
during periods without speech and smaller for those with
speech. Since the TEO provides an estimate of the signal
energy over time, it can be employed to obtain an idea
of speech/nonspeech activity and then decide an appro-
priate threshold value in the speech/nonspeech frame.
But directly using the TEO on noisy speech may result
in much undesired artefact and enhanced noises as TEO
is a fixed-sized local operator [27]. Therefore, instead of
direct employment of the TEO on the noisy speech, it is
found reasonable to apply the TEO on theWP coefficients
of the noisy speech [18]. The application of the discrete-
time TEO on theWj

k,m results in a set of TEO coefficients
t jk,m. The mth TEO coefficient corresponding to the kth
subband of the WP is given by

t jk,m = �d[W
j
k,m] , k = 1, .....2j. (4)

Unlike the approach of threshold determination directly
from the WP coefficients of noisy speech, the approach
to determine threshold from the TE-operated WP coef-
ficients and then employ it via a semisoft thresholding
function, has more potential to eliminate as much of the
noise as possible while still maintaining speech quality and
intelligibility in the enhanced speech [29].
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2.3 Statistical modeling of TE-operatedWP coefficients
This paper proposes a new thresholding function employ-
ing a threshold value determined for each subband of the
WP by statistically modeling the TE-operated WP coef-
ficients t jk,m with a probability distribution rather than
choosing a threshold value directly from the t jk,m.
In a certain range, the probability distribution of the

t jk,m of the noisy speech is expected to be nearly sim-
ilar to those of the noise. Also, outside that range, the
probability distribution of the t jk,m of the noisy speech
is expected to be similar to those of the clean speech.
Thus, by considering the probability distributions of the
t jk,m of the noisy speech, noise, and clean speech, a more
accurate threshold value can be obtained using a suit-
able scheme of pattern matching or similarity measure
between the probability distributions. It is well known that
the Kullback-Leibler (K-L) divergence provides a mea-
sure of the distance between two distributions. It is an
appealing approach to robustly estimate the differences
between two distributions. Instead of comparing just the
TE-operated WP coefficients t jk,m, the distribution of the
t jk,m of the noisy speech can be compared with the dis-
tribution of the t jk,m of noise or that of clean speech
using the K-L divergence. Since the K-L divergence is
not a symmetric metric, we propose the use of the SKL
divergence.

2.4 Optimal threshold calculation

This subsection presents our approach to obtain first the
idea of speech/silent frame based on the SKL divergence
and then to choose two different threshold values suitable
for silent and speech frames. At first, the threshold value
for a noisy speech frame is analytically obtained by solv-
ing equations either based on the SKL divergence between
the probability distribution functions (pdfs) of the t jk,m
of the noisy speech and that of the noise or based on
the SKL divergence between the pdfs of the t jk,m of the
noisy speech and that of the clean speech. To this end,
in a frame of noisy speech/ noise/ clean speech, for each
subband of WP, we formulate the histogram of the t jk,m
and approximate the histogram by a reasonably close pdf,
namely Gaussian distribution. For this purpose, we follow
the steps below:

1. The histogram of the t jk,m in each subband is
obtained. The number of bins in the histogram has
been set equal to the square root of the number of
samples divided by two.

2. Since the t jk,m of clean speech, noisy speech, and
noise are positive quantity, their histograms in each
subband can be approximated by the positive part of
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Figure 2 Probability distribution of TE-operatedWP coefficients
of clean speech.

a pdf following the Gaussian distribution. Such
statistical modeling of the t jk,m of clean speech, noisy
speech, and noise is supported by experimental
validation over all speech sentences of the NOIZEUS
noisy speech corpus [36] at different SNR levels.
Typical examples of such modeling are shown in
Figures 2, 3, and 4, respectively.

The method in [17] does not employ the TE operation
prior to computing the threshold value, and the thresh-
old value for each subband of a noisy speech frame is
determined by statistically modeling the WP coefficients.
Since the WP coefficients are a signed quantity, their his-
tograms in each subband are approximated by a two-sided
Gaussian pdf. In the proposed method, due to the simpler
approximation of the t jk,m of clean speech, noisy speech,
or noise by the positive part of a Gaussian pdf, the pro-
cess of deriving the threshold value becomes less complex
which is an additional advantage over the approach in
[17]. In order to analytically determine an appropriate
threshold value, we proceed as follows:
The K-L divergences are always nonnegative and zero if

and only if the approximate Gaussian distribution func-
tions of the t jk,m of noisy speech and that of the noise,
or the approximate Gaussian distribution functions of the
t jk,m of the noisy speech and that of the clean speech
are exactly the same. In order to have a symmetric dis-
tance between any two approximate Gaussian distribution
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Figure 3 Probability distribution of TE-operatedWP coefficients
of noisy speech.
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Figure 4 Probability distribution of TE-operatedWP coefficients
of noise.

functions as mentioned above, the symmetric K-L diver-
gence has been adopted in this paper. The symmetric K-L
divergence is defined as

SKL( p, q) = KL(p, q) + KL(q, p)
2

(5)

where p and q are the two approximate Gaussian pdfs cal-
culated from the corresponding histograms each having
M number of bins and KL(.) is the K-L divergence given by

KL(p, q) =
M∑
i=1

pi(t
j
k,m) ln

pi(t
j
k,m)

qi(t
j
k,m)

. (6)

In (6), pi(t
j
k,m) represents the approximate Gaussian pdf

of the t jk,m of the noisy speech estimated by

p̂i(t
j
k,m) = Number of coefficients in the ith bin of the histogram

Total number of coefficients in each subband
.

(7)

Similarly, the approximate Gaussian pdf of the t jk,m of
the noise and that of the t jk,m of the clean speech can be
estimated from (7) and denoted by q̂i(t

j
k,m) and r̂i(t

j
k,m),

respectively. Below a certain value λ of the t jk,m of the
noisy speech, the symmetric K-L divergence between
p̂i(t

j
k,m) and q̂i(t

j
k,m) is approximately zero, i.e.,

SKL(p̂i(t
j
k,m), q̂i(t

j
k,m)) ≈ 0 (8)

where the bins lie in the range [1, λ] in both p̂i(t
j
k,m) and

q̂i(t
j
k,m). Alternatively, above the value λ of the t jk,m of

the noisy speech, the symmetric K-L divergence between
p̂i(t

j
k,m) and r̂i(t

j
k,m) is almost zero, i.e.,

SKL(p̂i(t
j
k,m), r̂i(t

j
k,m)) ≈ 0 (9)

In (9), the bins lie in the range [λ+1, M] in both p̂i(t
j
k,m)

and r̂i(t
j
k,m). Using (5) and (6) in evaluating (8) and (9), we

get

λ∑
i=1

[ p̂i(t
j
k,m) − q̂i(t

j
k,m)] ln

p̂i(t
j
k,m)

q̂i(t
j
k,m)

≈ 0. (10)

M∑
i=λ+1

[ p̂i(t
j
k,m) − r̂i(t

j
k,m)] ln

p̂i(t
j
k,m)

r̂i(t
j
k,m)

≈ 0. (11)

From (10), it is apparent that the t jk,m of the noisy speech
lying in the range [1, λ] can be marked as the t jk,m of noise
and needed to be removed. Similarly, (11) attests that the
t jk,m of the noisy speech residing outside [1, λ] can be
treated as similar to the t jk,m of the clean speech and con-
sidered to be preserved. For obtaining a threshold value λ

in each subband, (10) and (11) can be expressed as
∫ λ

1
[

√
ϑ√

2πσS
exp(−ϑx2

2σ 2
S

) − 1
2πσN

exp(− x2

2σ 2
N

)] ln((1 − √
ϑ)

exp(−ϑx2

2σ 2
S

+ x2

2σ 2
N

))dx ≈ 0,

(12)

∫ ∞

λ+1
[

√
ϑ√

2πσS
exp(−ϑx2

2σ 2
S

) − 1
2πσS

exp(− x2

2σ 2
S

)] ln((
√

ϑ)

exp(
(1 − ϑ)x2

2σ 2
S

))dx ≈ 0,

(13)

where ϑ= σ 2
S /(σ

2
N+σ 2

S ).
The range used for solving Equations (12) and (13)

required for determining the threshold value λ in each
subband is different from that used in [17]. The value of
t jk,m for which the threshold reaches its optimum value
can be determined by minimizing (12) or (13). Since (12)
is a definite integral, the derivative of the function defined
in the left-hand side (L.H.S) of (12) representing the SKL
divergence between p̂i(t

j
k,m) and q̂i(t

j
k,m) is calculated and

set to zero. On the other hand, the derivative of the
function obtained in the L.H.S of (13) representing the
symmetric K-L distance between p̂i(t

j
k,m) and r̂i(t

j
k,m) is

calculated and set to zero. By simplifying either deriva-
tives, an optimum value of λ for each subband of a noisy
speech frame can be obtained as

λ(k) = σN (k)

√√√√2(γk + γ 2
k ) ln (

√
1 + 1

γk
), (14)

where k is the subband index, σN is the variance of noise
in each subband, and γk represents the segmental SNR
defined as

γk = σ 2
S (k)/σ 2

N (k). (15)

Considering the facts that the threshold value λ(k) in
(14) needs to be adjusted according to the input SNR and
σN is inversely proportional to the input SNR, a modified
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version of the threshold λ(k) in each subband of a noisy
speech frame can be derived as

λ(k) =[σN (k)/√γk]

√√√√2(γk + γ 2
k ) ln (

√
1 + 1

γk
). (16)

In the nonspeech/silent subbands of a frame of noisy
speech, the SKL divergence between the approximate
Gaussian pdfs of the t jk,m of the noisy speech and that of
the t jk,m of the noise is found to be nearly zero. An idea
of speech/silent frame can thus be obtained based on the
SKL divergence. Since in a silence frame only noise exists,
a threshold value different from that used in a subband
of a noisy speech frame should be selected for a subband
of a silent frame of a noisy speech in order to remove the
noise completely. Exploiting the facts above and using the
threshold λ(k) derived in (16) for each subband of a noisy
speech frame, two different threshold values suitable for
a subband of a silent or speech frame are proposed to be
chosen as

λ′(k) =
{
max(t jk,m), SKL( p̂i(t

j
k,m),q̂i(t

j
k,m))≈ 0

λ(k), otherwise.
(17)

It is noteworthy that, in the context of enhancing speech
under low levels of SNR, our proposed approach to deter-
mine the threshold value in a subband of a silent or
speech frame is not only different but also more reason-
able with simpler approximation and lesser computation
in comparison to that described in [17].

2.5 Denoising by thresholding
For denoising purpose, hard thresholding sets zero to the
coefficients whose absolute value is below the threshold
[37-39]. This ignores the fact that there may be noise coef-
ficients, which are bigger than the threshold value, thus
resulting in time-frequency discontinuities of enhanced
speech spectrum. Unlike the hard thresholding function,
the soft thresholding function handles signals in a differ-
ent way bymaking smooth transitions between the treated
and the deleted coefficients based on the threshold value
[20,37,38]. Noting the threshold determined by (17) as λ1,
the soft thresholding function can be applied on the mth
WP coefficients of the kth subband Y j

k,m as

(Ŷ j
k,m)S =

{
|Y j

k,m| − λ1(k), |Y j
k,m| ≥ λ1(k)

0, |Y j
k,m| < λ1(k).

(18)

The soft thresholding can be viewed as setting the com-
ponents of the noise to zero and performing a magnitude
subtraction on the speech plus noise components. It is
evident that the soft thresholding eliminates the time-
frequency discontinuity resulting in smoother signals, but

it yields the estimated coefficients that are the WP coef-
ficients |Y j

k,m| of the noisy speech shifted by an amount
of λ1(k). Employment of such a shift even when |Y j

k,m|
stands way out of noise level creates unnecessary bias in
the enhanced spectrum. The variance of the threshold val-
ues over the frames of the whole noisy speech also affects
the enhanced spectrum. The variance of the threshold val-
ues over the frames of the whole noisy speech also affects
the enhanced spectrum.
In order to overcome the problems as mentioned above,

in the semisoft thresholding function, the shifting by the
amount of the threshold value is avoided [39]. There-
fore, a semisoft thresholding function is preferred over
the soft thresholding function with respect to the vari-
ance and bias of the estimated threshold value. By taking
into account the advantages and shortcomings of all the
thresholding functions, we apply a semisoft thresholding
function on theWP coefficients of the noisy speech signal.
By defining λ2(k) as

λ2(k) = √
2λ1(k), (19)

the semisoft thresholding function is defined as

(Ỹ j
k,m) =

⎧⎪⎪⎨
⎪⎪⎩
0, |Y j

k,m| ≤ λ1(k)
Y j
k,m, |Y j

k,m| > λ2(k)

sgn(Y j
k,m)[λ2(k)|Y j

k,m|−λ1(k)
λ2(k)−λ1(k) ] , otherwise,

(20)

where Ỹ j
k,m stands for the resulting semisoft thresholded

WP coefficients.

2.6 Inverse wavelet packet transform
The enhanced speech frame is synthesized by perform-
ing the inverse WP transformationWP−1 on the resulting
thresholded WP coefficients Ỹ j

k,m

ŝ[n]= WP−1(Ỹ j
k,m), (21)

where ŝ[n] represents the enhanced speech frame. The
final enhanced speech signal is reconstructed by using the
standard overlap-and-add method.

3 Simulation results
In this section, a number of simulations are carried out to
evaluate the performance of the proposed method.

3.1 Simulation conditions
Real speech sentences from the NOIZEUS noisy speech
corpus [36] are employed for the experiments, where the
speech data is sampled at 8 KHz. Four different types of
noises, such as as white, car, pink, and multi-talker bab-
ble, are adopted from the NOISEX92 [40] and NOIZEUS
databases. Noisy speech at different SNR levels ranging
from 15 to −15 dB is considered for our simulations.
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Figure 5 Performance comparison of different methods in terms
of SNR improvement in decibels for white noise-corrupted
speech.

In order to obtain overlapping analysis frames, Ham-
ming windowing operation is performed, where the size
of each of the frame is 512 samples with 50% overlap
between successive frames. A three-level WP decomposi-
tion tree with db10 bases function is applied on the noisy
speech frames, and the Teager energy operation is per-
formed on the resulting WP coefficients. In the proposed
method, for the implementation of WP decomposition,
the ‘wpdec’ function of theMatlab wavelet toolbox is used,
where in order to obtain optimal decomposition, Shanon
entropy criterion is employed. For the three-level WP
transform, the noisy speech signal y[n] with frame length
N = 512 samples is decomposed into eight subbands.
For each subband (64 samples), a histogram is computed
and variance is estimated. By computing the threshold(s),
λ1(k) = λ′(k) and λ2 from (17) and (19), respectively, a
semisoft thresholding function is developed and applied
on the WP coefficients of the noisy speech using (20).

3.2 Comparison metrics
Standard objective metrics, namely overall SNR improve-
ment in decibels, Perceptual Evaluation of Speech Quality
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Figure 6 Performance comparison of different methods in terms
of PESQ for white noise-corrupted speech.

Table 1 Performance comparison of different methods in
terms of WSS for white noise-corrupted speech

SNR (dB) Universal WPF WTHSKL Proposed
threshold algorithm method method

15 37 24.52 22.34 18.87

10 44.77 37.6 34.9 26.5

5 53.9 46.2 46.08 34.3

0 66.63 59.2 60.66 43.65

−5 83.8 71.4 76.92 52.45

−10 96 87.5 89.29 65.2

−15 104.44 91.9 90.37 77.20

(PESQ), and Weighted Spectral Slope (WSS), are used for
the evaluation of the proposed method [5,41,42]. In our
simulation results, we have considered all 30 sentences of
the NOIZEUS noisy speech corpus. We have taken into
account the average result obtained from all 30 sentences
for computing each of the objective metrics, namely SNR
improvement in decibels, PESQ score, and WSS values.
The proposed method is subjectively evaluated in terms
of the spectrogram representations of the clean speech,
noisy speech, and enhanced speech. Informal listening
tests are also carried out, where the mean opinion scores
(MOS) are evaluated in three dimensions, namely sig-
nal distortion (SIG), noise distortion (BAK), and over-
all quality (OVRL). The performance of our method is
compared with some of the existing thresholding-based
speech enhancement methods, such as Universal [20],
Wavelet Packet Thresholding with Symmetric K-L Diver-
gence (WTHSKL), and WPF [18] in both objective and
subjective senses. In our method, while determining the
threshold in (16), only time adaptation approach is incor-
porated through TE operation on WP coefficients as in
the WPF method in [18] (time-adaptive approach), where
threshold is adapted through time only and modulated
depending on the speech or silent nature of the signal
under an analysis frame. Unlike the time- and space-
adaptive approach in [28], threshold value is not adapted

Table 2 Performance comparison in terms of SNR
improvement in decidels in the presence of white noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 1.93 1.84 1.1 2.45

10 3.7 2.52 2.38 5.13

5 4.6 3.2 2.9 7.2

0 5.36 4.02 3.9 9.2

−5 8 6.8 5.1 10.85

−10 9.5 8 7.2 12.42

−15 11.29 10.32 9.86 13.48
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Table 3 Performance comparison in terms of PESQ scores
in the presence of white noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 3.21 3.1 2.9 3.2374

10 2.89 2.51 2.33 2.9

5 2.4 2.2 2 2.733

0 2.1 1.82 1.68 2.47

−5 1.85 1.54 1.36 2.2

−10 2 1.4 1.31 2

−15 1.42 1.35 1.28 1.8

through scales in our proposed method. Therefore, we
found it more justified and fair to compare our proposed
method with the WPF method. Apart from these meth-
ods, statistical model-based method (MMSE[9]), spectral
subtractive method (spectral subtraction [6]), andWiener
filtering-type algorithm (Wiener Filtering [14]) are also
included for the purpose of objective and subjective com-
parison. We have implemented the Universal, WTHSKL,
and WPF methods independently using the parameters
specified therein. For implementation of theMMSE, spec-
tral subtraction, and Weiner filtering methods, we have
used publicly available Matlab codes (MMSESTSA84,
WienerScalart96, and SSBoll79) from the Matlab Central
website (http://www.mathworks.com/matlabcentral/).

3.3 Objective evaluation
3.3.1 Results onwhite noise-corrupted speech
The results for semisoft thresholding function in terms
of all the objective metrics, such as SNR improvement in
decibels, PESQ, and WSS, obtained using the Universal,
WTHSKL, WPF, and proposed methods for white noise-
corrupted speech are presented in Figures 5 and 6 and in
Table 1.
Figure 5 shows the SNR improvement in decibels

obtained using different methods employing semisoft
thresholding function in the presence of white noise,

Table 4 Performance comparison in terms ofWSS values in
the presence of white noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 27.5 35.01 58.1 18.87

10 41.71 43.3 66.8 26.5

5 55.4 58.1 79.8 34.3

0 63.12 61.6 98.2 43.65

−5 77.6 67.9 113.8 52.45

−10 80 74 119.5 65.2

−15 91.46 85.14 123.81 77.20

Table 5 Performance comparison of the SNR improvement
in decidels for different methods in the presence of car
noise

SNR (dB) Universal WPF WTHSKL Proposed
threshold algorithm method method

15 1.2 1.3 2.7 3.1

10 3.2 3.1 4.5 5

5 5.1 5 4.99 7.89

0 6.12 5.97 6.92 9.38

−5 8 7.76 8.86 11.9

−10 9.5 9.78 10.94 12.5

−15 11.51 10.98 11.1 13.37

where the SNR varies from 15 to −15 dB. It is seen from
this figure that in the SNR range under consideration, the
improvement in SNR in decidels is comparable for all the
comparison methods, but they show comparatively lower
values relative to the proposed method at all the levels of
SNR.
The PESQ scores vs SNR obtained by using different

methods are portrayed in Figure 6. This figure shows that
the proposed method using the semisoft function is capa-
ble of producing enhanced speech with better quality as it
gives larger scores of PESQ for a wide range of SNR levels,
whereas the PESQ scores resulting from all other meth-
ods are comparable and relatively lower even at a high
SNR of 15 dB. It is also seen from Figure 6 that the dif-
ference in PESQ scores of the proposed method and that
of the other methods increases as SNR decreases, thus
indicating the effectiveness of the proposed method using
semisoft thresholding function in enhancing speech even
in a severely noisy environment.
TheWSS values obtained by using differentmethods are

summarized in Table 1 for varying SNR of 15 to −15 dB.
For a particular method in Table 1, the WSS increases as
SNR decreases. At a particular SNR, such as −15 dB, the
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Figure 7 Performance comparison of different methods using
semisoft thresholding function in terms of PESQ scores for car
noise-corrupted speech.
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Figure 8 Performance comparison of different methods using
semisoft thresholding function in terms of WSS for car
noise-corrupted speech.

proposed method using semisoft function is superior in a
sense that it gives the lowestWSS value, whereas the other
methods produce comparatively higher values of WSS.
In order to show the effectiveness of the proposed

method, we have carried out another comparison here
by providing the speech enhancement results of the pro-
posedmethod and that of theMMSE [9], spectral subtrac-
tion [6], and Wiener filtering [14] methods in Tables 2, 3,
and 4 for white noise-corrupted speech. It is clear from the
results of these tables that the proposed method outper-
forms all the speech enhancement methods as mentioned
above in the sense of higher output SNR in decibels,
higher PESQ, and lower WSS values at all the SNRs
ranging from high to low.

3.3.2 Results on car noise-corrupted speech
Now, we present the results in terms of all the objec-
tive metrics as mentioned above obtained by using the
Universal, WTHSKL, WPF, and the proposed methods in
Table 5 and in Figures 7 and 8 for car noise-corrupted
speech.
In Table 5, the performance of the proposed method

using semisoft thresholding function is compared with
that of the other methods at different levels of SNR. For
a method in Table 5, the SNR improvement in decibels

Table 6 Performance comparison in terms of SNR
improvement in decibels in the presence of car noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 1.61 2.5 2.2 3.1

10 2.74 4.1 3.74 5

5 5.63 7.5 5.4 7.89

0 6.94 8.3 6.3 9.38

−5 9.2 9.83 8.8 11.9

−10 11.74 11 12.1 12.5

−15 12.5 12.8 13.2 13.37

Table 7 Performance comparison in terms of PESQ scores
in the presence of car noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 3 2.99 2.7 3.06

10 2.72 2.6 2.5 2.82

5 2.6 2.49 2.24 2.68

0 2.2 2.2 1.86 2.31

−5 1.9 1.8 1.6 2.19

−10 1.6 1 1.32 2.1

−15 1.42 1.39 1.26 1.94

increases as SNR decreases. At a low SNR of −15 dB,
the proposed method yields the highest SNR improve-
ment in decibels. Such larger values of SNR improvement
in decibels at a low level of SNR attest the capability of
the proposed method in producing enhanced speech with
better quality even for car noise-corrupted speech.
In the presence of car noise, the PESQ scores at differ-

ent SNR levels resulting from using the other methods are
compared with respect to the proposed method employ-
ing semisoft thresholding function in Figure 7. It can be
seen from the figure that at a high level of SNR, such as 15
dB, Universal, WTHSKL, and WPF methods show lower
values of PESQ scores, whereas the PESQ score is much
higher, as expected, for the proposed method. The pro-
posed method also yields larger PESQ scores compared to
that of the other methods at lower levels of SNR. Since, at
a particular SNR, a higher PESQ score indicates a better
speech quality, the proposed method is indeed better in
performance even in the presence of a car noise.
Figure 8 represents theWSS values as a function of SNR

for the proposed method employing semisoft threshold-
ing function and that for the other methods. As shown in
the figure, the WSS values resulting from all other meth-
ods are comparable and relatively larger for a wide range
of SNR levels, whereas the proposed method is capable of

Table 8 Performance comparison in terms ofWSS values in
the presence of car noise

SNR (dB) MMSE Spectral Wiener Proposed
subtraction filtering method

15 29.2 39.84 47 23

10 36.2 47.74 52.85 30.3

5 45.62 56.5 64.9 38.5

0 56.85 67.32 71.3 48.3

−5 66.85 77.7 82.51 58.4

−10 76.31 85 90.23 75

−15 89.73 92.7 101.6 81.5
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Figure 9 Performance comparison of the SNR improvement in
decibels for different methods in the presence of pink noise.

producing enhanced speech with better quality as it gives
lower values of WSS at a low SNR of −15 dB.
For car noise-corrupted speech, the results of the objec-

tive experiments comparing the proposed method with
the MMSE [9], spectral subtraction [6], and Wiener filter-
ing [14] methods are shown in Tables 6, 7, and 8. These
results attest that even in the presence of car noise, the
proposed method remains better in speech enhancement
performance in terms of SNR improvement in decibels,
PESQ scores, and WSS values for a wide range of SNR.

3.3.3 Results on pink noise-corrupted signal
All the objective metrics for evaluating the performance
of the proposed method relative to the other methods for
pink noise-corrupted speech are computed and depicted
in Figures 9 and 10 and in Table 9.
The SNR improvement in decibels resulting from using

different methods are summarized in Figure 9. It is vivid
from this figure that the other methods produce compara-
tively lower improvement in SNR in decibels in the whole
SNR range, while the proposed method using semisoft
thresholding function remains superior in a sense that it
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Figure 10 Performance comparison of different methods using
semisoft thresholding function in terms of WSS values for pink
noise-corrupted speech.

Table 9 Performance comparison of PESQ scores for
different methods in the presence of pink noise

SNR (dB) Universal WPF WTHSKL Proposed
threshold algorithm method method

15 3.13 3 2.98 3.8

10 2.46 2.62 2.82 3.4

5 2.2 2.5 2.6 3

0 2.00 2.04 2.2 2.5

−5 1.82 1.51 1.4 2.3

−10 1.45 1.59 1.2 2.114

−15 1.31 1.14 1 1.8

gives the highest improvement in SNR in decibels even at
an SNR as low as −15 dB of pink noise.
The PESQ scores of the proposed method and that

obtained using different comparison methods are shown
in Table 9 with respect to SNR levels varying from high
(15 dB) to low (−15 dB). It is clear from the table
that the other methods continue to provide lower PESQ
scores, while the proposed method maintain compara-
tively higher PESQ scores even in the presence of severe
pink noise of −15 dB.
The variation of the output WSS with respect to SNR

levels for different methods and that for the proposed
method using semisoft thresholding function is portrayed
in Figure 10. It is evident from analyzing each of these
figures that, in the whole SNR range, the other meth-
ods continue to produce much higher WSS values with
respect to the proposedmethod using the semisoft thresh-
olding function. Note that the proposed method performs
best in a sense that it yields the lowest WSS values almost
at different SNR levels.
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Figure 11 Performance comparison of different methods in
terms of SNR improvement in decibels for babble
noise-corrupted speech.
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Figure 12 Performance comparison of different methods in
terms of PESQ scores for babble noise-corrupted speech.

3.3.4 Results onmulti-talker babble noise-corrupted speech
The results obtained from the multi-talker babble noise-
corrupted speech in terms of the SNR improvement in
decibels, PESQ scores, and WSS values for the proposed
method using semisoft thresholding function and that of
the other methods are depicted in Figures 11, 12, and 13 at
particular SNR levels of 15, 0, and −15 dB. It is noticeable
from these figures that the performance of all the meth-
ods degrades in the presence of multi-talker babble noise
compared to that in the pink or car or white noise, but the
proposed method retains its superiority with respect to all
the levels of SNRs.
Figure 11 provides a plot for the SNR improvement in

decibels obtained from all the methods for babble noise-
corrupted speech. It is seen that the proposed method
maintains better performance at all the SNR levels con-
sidered. Also, the proposed method still remains the best,
thus showing higher capability of producing enhanced
speech with better quality at a very low SNR level of 0 dB
or even lower than that.
In a similar babble noisy condition, the PESQ scores

resulting from using the speech enhancement methods
under consideration are shown in Figure 12. As seen, the
proposed method continues to provide better results for
low levels of SNR, such as −15 dB.
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Figure 13 Performance comparison of different methods in
terms of WSS values for babble noise-corrupted speech.
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Figure 14 Spectrogram of sp03.wav utterance by a male speaker
from the NOIZEUS database. (a) Clean speech, (b) noisy speech
(white noise from NOISEX92 database of 5-dB SNR), (c, d, e, f)
enhanced speech signals obtained using the Universal, WPF, WTHSKL,
and the proposed methods, respectively.
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Figure 15 Spectrogram of sp01.wav utterance by a male speaker
from the NOIZEUS database. (a) Clean speech, (b) noisy speech
(car noise from NOIZEUS database of −5-dB SNR), (c, d, e, f)
enhanced speech signals obtained using the Universal, WPF, WTHSKL,
and the proposed methods, respectively.

Table 10 Mean scores of SIG scale for different methods in
the presence of car noise at a 5-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 3.7 3.1 4.3 4.8

2 3 2 4 3.5

3 3.5 3 3.5 5

4 1.5 1.5 3.5 5

5 3 2.5 4 5

Performance comparison of the mean scores of SIG scale evaluated for different
methods in the presence of car noise at a SNR of 5 dB.

Also, theWSS values obtained from all the methods as a
function of SNR are plotted in Figure 13 for babble noise-
corrupted speech. This figure illustrates that, as expected,
the WSS values of the proposed method are somewhat
increased in comparison to the other noisy cases, but its
performance still remains better than that provided by the
other methods for a wide range of SNR values from 15
to −15 dB.
We have tested our proposed method in a wide range

of SNRs and reported the results in the SNR range of 15
to −15 dB, where a significant difference in performance
is noticed for the proposed method relative to the other
methods in comparison. Our main focus was to show the
capability of the proposed method at very low SNR lev-
els, such as −15 dB, where the other comparison methods
produce less accurate results but the proposed method
successfully enhances speech with higher accuracy. On
the other hand, in the case of very high SNR, such as
that above 15 dB, although the proposed method consis-
tently demonstrates better performance, the performance
becomes competitive with respect to the other methods in
comparison. Therefore, the range of SNR used to present
the comparative performance analysis is chosen from 15
to −15 dB.

3.4 Subjective evaluation
In order to evaluate the subjective observation of the
enhanced speech obtained by using the proposedmethod,

Table 11 Mean scores of BAK scale for different methods
in the presence of car noise at a 5-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 2.4 3.8 2.9 4.3

2 1.5 3 1 1.5

3 3 3 3 4

4 1.5 2.5 3 4

5 4 4 4.5 4

Performance comparison of the mean scores of BAK scale evaluated for different
methods in the presence of car noise at a SNR of 5 dB.
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Table 12 Mean scores of OVRL scale for different methods
in the presence of car noise at a 5-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 3.2 3.4 3.7 4.6

2 2 2 3 3.5

3 3 2.5 4 5

4 1 1.5 3.5 5

5 4 3.5 5 5

Performance comparison of the mean scores of OVRL scale evaluated for
different methods in the presence of car noise at a SNR of 5 dB.

spectrograms of the clean speech, noisy speech, and
enhanced speech signals obtained using the Universal
[20],WTHSKL [17],WPF [18], and proposedmethods are
presented in Figure 14 for white noise-corrupted speech
at an SNR of 5 dB and in Figure 15 for car noise-corrupted
speech at an SNR of −5 dB for clean speech (a), noisy
speech (b), enhanced speech signals obtained using the
Universal, WPF, WTHSKL, and the proposed methods,
respectively (c, d, e, f ). It is evident from these figures that
the harmonics are preserved and the amount of distor-
tion is greatly reduced in the proposed method no matter
how corrupted the speech is by white or car noise and
regardless of its level. Thus, the spectrogram observa-
tions with lower distortion also validate our claim of better
speech quality as obtained in our objective evaluations
in terms of higher SNR improvement in decibels, higher
PESQ score, and lowerWSS in comparison with the other
methods.
Informal listening tests are also conducted, where the

listeners were allowed and arranged to perceptually eval-
uate the enhanced speech signals. In order to reduce the
length and cost of the subjective evaluations, only a sub-
set of the NOIZEUS corpus was processed by MMSE [9],
spectral subtraction [6],Wiener filtering [14], and the pro-
posed methods for subjective evaluation. A total of ten
sentences spoken by two male and two female speakers
and corrupted in two background noises (car and babble)

Table 13 Mean scores of SIG scale for different methods in
the presence of babble noise at a 10-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 4.1 3.1 4.2 4.5

2 3.9 3.9 4.4 5

3 4.2 4.1 4.7 4.8

4 4.1 3.7 4 4.4

5 4.2 3.9 4.3 5

Performance comparison of the mean scores of SIG scale evaluated for different
methods in the presence of babble noise at a SNR of 10 dB.

Table 14 Mean scores of BAK scale for different methods
in the presence of babble noise at a 10-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 3.5 3.3 3.8 4.0

2 2.6 2.5 3.3 3.9

3 3 2.8 3.5 3.8

4 3 2.9 3.6 3.7

5 3.2 3.2 3.6 3.9

Performance comparison of the mean scores of BAK scale evaluated for different
methods in the presence of babble noise at a SNR of 10 dB.

at SNR levels of 5 and 10 dB were processed and presented
to five listeners for evaluation.
Subjective tests were performed according to ITU-T

recommendation P.835 [36,43]. The P.835 methodology is
designed to reduce the listener’s uncertainty in a subjec-
tive test about the basis of their ratings on overall quality
of a noisy speech signal. In this test, a listener is instructed
to successively attend and rate the enhanced speech signal
based on (a) the speech signal alone using a scale of SIG
(1 = very unnatural, 5 = very natural), (b) the background
noise alone using a scale of background conspicuous/
intrusiveness (BAK) (1 = very conspicuous, very intru-
sive; 5 = not noticeable), and (c) the overall effect using
the scale of the mean opinion score (OVRL) (1 = bad,
5 = excellent). More details about the testing methodology
can be found in [36].
The mean scores of SIG, BAK, and OVRL scales for

the four speech enhancement methods evaluated in the
presence of car noise at an SNR of 5 dB are shown in
Tables 10, 11, and 12 . For the four methods examined
using babble noise-corrupted speech at an SNR of 10
dB, the mean scores of SIG, BAK, and OVRL scales are
summarized in Tables 13, 14, and 15. The mean scores in
the presence of both car and babble noises demonstrate
that the lower signal distortion (i.e., higher SIG scores)
and the lower noise distortion (i.e., higher BAK scores)
are obtained with the proposed method relative to that

Table 15 Mean scores of OVRL scale for different methods
in the presence of babble noise at a 10-dB SNR

Listener Spectral Wiener MMSE Proposed
subtraction filtering method

1 3.6 3.9 4.3 4.8

2 4.5 3.8 4.1 4.9

3 3 3.5 4.2 4.6

4 3.2 4.2 4 4.7

5 4.0 3.8 4.1 5

Performance comparison of the mean scores of OVRL scale evaluated for
different methods in the presence of babble noise at a SNR of 10 dB.
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obtained by MMSE [9], spectral subtraction [6], and
Wiener filtering [14] methods in most of the conditions.
It is also shown that a consistently better performance in
OVRL scale is offered by the proposed method not only
in car but also in babble noisy conditions at both SNR
levels of considered in comparison to that provided by all
the methods mentioned above. Overall, it is found that
the proposed method possesses the highest subjective
sound quality in comparison to that of the other methods
in case of different noises at various levels of SNR. The
performance of the proposed system can be validated
following the web link https://sites.google.com/site/
celiatahsinaresearchwork/research/important-research-
links that includes the noisy and enhanced files.

4 Conclusions
An improved WP-based approach to solve the problems
of speech enhancement has been presented in this paper.
We develop a statistical model-based technique, where
TE-operated WP coefficients are employed to obtain
a suitable threshold based on the SKL divergence. To
solve the equations required for threshold determina-
tion, the TE-operated WP coefficients of noisy speech,
clean speech, or noise is well approximated by the pos-
itive part of a Gaussian distribution. Instead of using a
unique threshold for all frames, the threshold value here
is adapted with respect to speech and silence frames
based on the SKL divergence. Then, by employing a
semisoft thresholding function, theWP coefficients of the
noisy speech are thresholded in order to obtain a cleaner
speech. Standard objective and subjective evaluations on
the simulation results show that the proposed method is
capable of consistently yielding enhanced speech with bet-
ter quality and intelligibility compared to that obtained
from the existing thresholding-based methods. However,
there are some scopes for possible future research. In the
proposed speech enhancement method, we have formu-
lated the histogram of the Teager energy-operated WP
coefficients and approximated the histogram by a reason-
ably close probability distribution function, namely Gaus-
sian distribution. But other types of distributions, such as
logistic, T-scale, extreme value, and generalized extreme
value can also be explored to approximate the histograms
of the WP coefficients. Moreover, in our method, both
the threshold determination and the thresholding opera-
tion are performed in the WP domain. Same operations
can be employed in perceptual wavelet packet domain,
where the use of a perceptually weighted filter would
be able to mask the residual noise, making it audibly
imperceptible.
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