67 research outputs found

    Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material

    Get PDF
    The formation of helical self-assembled fibres by a C-3 symmetric molecule incorporating three tetrathiafulvalene units is shown to be influenced dramatically by the processing conditions, leading to a variety of different chiral forms, including unprecedented croissants

    Strain sensitive flexible magnetoelectric ceramic nanocomposites

    Full text link
    Advanced flexible electronics and soft robotics require the development and implementation of flexible functional materials. Magnetoelectric (ME) oxide materials can convert magnetic input into electric output and vice versa, making them excellent candidates for advanced sensing, actuating, data storage, and communication. However, their application has been limited to rigid devices due to their brittle nature. Here, we report flexible ME oxide composite (BaTiO3/CoFe2O4) thin film nanostructures that can be transferred onto a stretchable substrate such as polydimethylsiloxane (PDMS). In contrast to rigid bulk counterparts, these ceramic nanostructures display a flexible behavior and exhibit reversibly tunable ME coupling via mechanical stretching. We believe our study can open up new avenues for integrating ceramic ME composites into flexible electronics and soft robotic devices

    Electrostatic Catalysis of a Click Reaction in a Microfluidic Cell

    Full text link
    Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate redox and/or non-redox chemical processes with stereo- and regio-specificity. In natural catalysis, controlled mass transport of chemical species in confined spaces is also key in facilitating the transport of reactants into the active reaction site. Despite the opportunities the above offers in developing strategies for a new, clean electrostatic catalysis exploiting oriented electric fields, research in this area has been mostly limited to theoretical and experimental studies at the level of single molecules or small molecular ensembles, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the traditional Cu(I)-catalyzed method of the same reaction. Mass diffusion control is achieved in a custom-built microfluidic cell, which enhances reagent transport towards the electrified reactive interface while avoiding both turbulent flow conditions and poor control of the convective mass transport. This unprecedented electrostatic continuous-flow microfluidic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.Comment: Main Manuscript part includes 12 pages, 4 figures, 1 table and Supporting Information part includes 20 pages, 8 figures, 1 tabl

    Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF

    Get PDF
    Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions

    Magnetoelectric Effect in Hydrogen Harvesting: Magnetic Field as a Trigger of Catalytic Reactions (Adv. Mater. 19/2022)

    Get PDF
    Magnetic fields have been regarded as an additional stimulus for electro- and photocatalytic reactions, but not as a direct trigger for catalytic processes. Multiferroic/magnetoelectric materials, whose electrical polarization and surface charges can be magnetically altered, are especially suitable for triggering and control of catalytic reactions solely with magnetic fields. Here, we demonstrate that magnetic fields can be employed as an independent input energy source for hydrogen harvesting by means of the magnetoelectric effect. Composite multiferroic CoFe2O4-BiFeO3 core-shell nanoparticles act as catalysts for the hydrogen evolution reaction (HER) that is triggered when an alternating magnetic field is applied to an aqueous dispersion of the magnetoelectric nanocatalysts. Based on density functional calculations, we propose that the hydrogen evolution is driven by changes in the ferroelectric polarization direction of BiFeO3 caused by the magnetoelectric coupling. We believe our findings will open new avenues towards magnetically induced renewable energy harvesting

    Pathway selection as a tool for crystal defect engineering: A case study with a functional coordination polymer

    Get PDF
    New synthetic routes capable of achieving defect engineering of functional crystals through well- controlled pathway selection will spark new breakthroughs and advances towards unprecedented and unique functional materials and devices. In nature, the interplay of chemical reactions with the diffusion of reagents in space and time is already used to favor such pathway selection and trigger the formation of materials with bespoke properties and functions, even when the material composition is preserved. Following this approach, herein we show that a controlled interplay of a coordination reaction with mass transport (i.e. the diffusion of reagents) is essential to favor the generation of charge imbalance defects (i.e. protonation defects) in a final crystal structure (thermodynamic product). We show that this syn- thetic pathway is achieved with the isolation of a kinetic product (i.e. a metastable state), which can be only accomplished when a controlled interplay of the reaction with mass transport is satisfied. Account- ing for the relevance of controlling, tuning and understanding structure-properties correlations, we have studied the spin transition evolution of a well-defined spin-crossover complex as a model system

    Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation

    Full text link
    Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation. To address these limitations, our study proposes to load these functional nanomaterials on a multifunctional mobile microrobot This microrobot is designed by coating magnetic and piezoelectric barium titanate nanoparticles on helical biotemplates, allowing for the combination of magnetic navigation and ultrasound-mediated piezoelectric effects to target amyloid disaggregation. Our findings demonstrate that acoustically actuated PiezoBOTs can effectively reduce the size of aggregated amyloid proteins by over 80% in less than 10 minutes by shortening and dissociating constituent amyloid fibrils. Moreover, the PiezoBOTs can be easily magnetically manipulated to actuate the piezocatalytic nanoparticles to specific amyloidosis-affected tissues or organs, minimizing side effects. These biocompatible PiezoBOTs offer a promising non-invasive therapeutic approach for amyloidosis diseases by targeting and breaking down protein aggregates at specific organ or tissue sites

    Microfluidic‐assisted blade coating of compositional libraries for combinatorial applications: the case of organic photovoltaics

    Get PDF
    Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients

    Tuning the electrical conductance of metalloporphyrin supramolecular wires

    Get PDF
    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductanc than their current in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high conductance CPP single-molecule devices

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF
    corecore