115 research outputs found

    EGFR Signaling Promotes beta-Cell Proliferation and Survivin Expression during Pregnancy

    Get PDF
    Placental lactogen (PL) induced serotonergic signaling is essential for gestational beta-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR) function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced beta-cell mass compensation. Islets were isolated from wild-type and beta-cell-specific EGFR-dominant negative mice (E1-DN), stimulated with PL and analyzed for beta-cell proliferation and expression of genes involved in gestational beta-cell growth. beta-cell mass dynamics were analyzed both with traditional morphometrical methods and three dimensional optical projection tomography (OPT) of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5) when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5). PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5) mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of beta-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.Peer reviewe

    Enhanced Efficacy of the CDNF/MANF Family by Combined Intranigral Overexpression in the 6-OHDA Rat Model of Parkinson's Disease

    Get PDF
    Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.Molecular Therapy (2014); doi:10.1038/mt.2014.206

    Stories from the field:Women's networking as gender capital in entrepreneurial ecosystems

    Get PDF
    Women are underrepresented in successful entrepreneurial ecosystems and the creation of women-only entrepreneurial networks has been a widespread policy response. We examine the entrepreneurial ecosystem construct and suggest that it, and the role networks play in entrepreneurial ecosystems, can be analysed in terms of Bourdieu's socio-analysis as field, habitus and capital. Specifically, we develop the notion of gender capital as the skill set associated with femininity or from simply being recognized as feminine. We apply this to the development of women's entrepreneurial networks as a gender capital enhancing initiative. Using data from qualitative interviews with network coordinators and women entrepreneurs we reflect on the extent to which formally established women-only networks generate gender capital for their members and improve their ability to participate in the entrepreneurial ecosystem. The paper concludes by drawing out the implications of our analysis for theory, entrepreneurial practice and economic development policy

    Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila

    Get PDF
    Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75 receptors and cell death via p75 and Sortilin. NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88-NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts
    corecore