120 research outputs found

    The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer

    Get PDF
    available in PMC 2011 February 3.MCL-1 has emerged as a major oncogenic and chemoresistance factor. A screen of stapled peptide helices identified the MCL-1 BH3 domain as selectively inhibiting MCL-1 among the related anti-apoptotic Bcl-2 family members, providing insights into the molecular determinants of binding specificity and a new approach for sensitizing cancer cells to apoptosis.National Institutes of Health (U.S.) (NIH award 5RO1GM084181)National Institutes of Health (U.S.) (NIH grant 5P01CA92625)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F31CA144566)Burroughs Wellcome Fund (Career Award

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    Get PDF
    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes

    The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.

    Get PDF
    Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT), which induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential coenzyme NAD(+). Expression or injection of a noncatalytic TNT mutant showed no cytotoxicity in macrophages or in zebrafish zygotes, respectively, thus demonstrating that the NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a new NAD(+) glycohydrolase fold of TNT, the founding member of a toxin family widespread in pathogenic microorganisms

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography

    The N-terminus of FILIA Forms an Atypical KH Domain with a Unique Extension Involved in Interaction with RNA

    Get PDF
    FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts during mouse oogenesis and early embryogenesis

    Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1

    Get PDF
    Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region

    UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Get PDF
    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation
    corecore