25 research outputs found

    Low-temperature orientational order and possible domain structures in C(_{60}) fullerite

    Full text link
    Based on a simple model for ordering of hexagons on square planar lattice, an attempt has been made to consider possible structure of C(_{60}) fullerite in its low temperature phase. It is shown that hexagons, imitating fullerens oriented along (C_{3}) axes of \emph{sc} lattice, can be ordered into an ideal structure with four non-equivalent molecules in unit cell. Then the energy degeneracy for each hexagon rotations by (\pi /3) around its (C_{3}) axis leaves the translational and orientational order in this structure, but leads to a random distribution of (\pi /3) rotations and hence to {}``averaged{}'' unit cell with two molecules. However the most relevant structural defects are not these intrinsic \char`\"{}misorientations\char`\"{} but certain walls between the domains with different sequencies of the above-mentioned two (non-ideal) sublattices. Numeric estimates have been made for the anisotropic inter-molecular potential showing that the anisotropy is noticeably smaller for molecules in walls than in domains

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic

    Specific features of thermal expansion and polyamorphism in CH4–C60 solutions at low temperatures

    Get PDF
    The temperature dependence of the linear thermal expansion coefficient α(T) has been investigated in the temperature range of 2.5 to 23 K for two different CH4–C60 solutions in which CH4 molecules occupied 24 and 50% of the octahedral interstitial sites of the C60 lattice. In both cases, α(T) exhibits hysteresis, suggesting the existence of two types of orientational glass associated with these solutions. The temperature of the first-order phase transition between these two glasses was estimated and the behavior of these two glasses compared. The characteristic times of thermalization τ1, reorientation of the C60 molecules τ2, and of the phase transformation between the glasses τ', have been estimated for these solutions. Both the temperature dependence of α(T) and the characteristic thermalization time τ1are found to have features near the phase transition temperature and an explanation has been put forward to explain these observed features

    TESS Cycle 2 observations of roAp stars with 2-min cadence data

    Full text link
    We present the results of a systematic search of the Transiting Exoplanet Survey Satellite (TESS) 2-min cadence data for new rapidly oscillating Ap (roAp) stars observed during the Cycle 2 phase of its mission. We find seven new roAp stars previously unreported as such and present the analysis of a further 25 roAp stars that are already known. Three of the new stars show multiperiodic pulsations, while all new members are rotationally variable stars, leading to almost 70 per cent (22) of the roAp stars presented being α2\alpha^2 CVn-type variable stars. We show that targeted observations of known chemically peculiar stars are likely to overlook many new roAp stars, and demonstrate that multi-epoch observations are necessary to see pulsational behaviour changes. We find a lack of roAp stars close to the blue edge of the theoretical roAp instability strip, and reaffirm that mode instability is observed more frequently with precise, space-based observations. In addition to the Cycle 2 observations, we analyse TESS data for all known roAp stars. This amounts to 18 further roAp stars observed by TESS. Finally, we list six known roAp stars that TESS is yet to observe. We deduce that the incidence of roAp stars amongst the Ap star population is just 5.5 per cent, raising fundamental questions about the conditions required to excite pulsations in Ap stars. This work, coupled with our previous work on roAp stars in Cycle 1 observations, presents the most comprehensive, homogeneous study of the roAp stars in the TESS nominal mission, with a collection of 112 confirmed roAp stars in total.Comment: Accepted for publication in MNRAS. 32 Pages, 2 Tables, 77 Figure

    On the polyamorphism of fullerite-based orientational glasses

    Get PDF
    The dilatometric investigation in the temperature range of 2-28K shows that a first-order polyamorphous transition occurs in the orientational glasses based on C60 doped with H2, D2 and Xe. A polyamorphous transition was also detected in C60 doped with Kr and He. It is observed that the hysteresis of thermal expansion caused by the polyamorphous transition (and, hence, the transition temperature) is essentially dependent on the type of doping gas. Both positive and negative contributions to the thermal expansion were observed in the low temperature phase of the glasses. The relaxation time of the negative contribution occurs to be much longer than that of the positive contribution. The positive contribution is found to be due to phonon and libron modes, whilst the negative contribution is attributed to tunneling states of the C60 molecules. The characteristic time of the phase transformation from the low-T phase to the high-T phase has been found for the C60-H2 system at 12K. A theoretical model is proposed to interpret these observed phenomena. The theoretical model proposed, includes a consideration of the nature of polyamorphism in glasses, as well as the thermodynamics and kinetics of the transition. A model of non-interacting tunneling states is used to explain the negative contribution to the thermal expansion. The experimental data obtained is considered within the framework of the theoretical model. From the theoretical model the order of magnitude of the polyamorphous transition temperature has been estimated. It is found that the late stage of the polyamorphous transformation is described well by the Kolmogorov law with an exponent of n=1. At this stage of the transformation, the two-dimensional phase boundary moves along the normal, and the nucleation is not important.Comment: 29 pages, 14 figures, added references, corrected typo

    <em>TESS</em> Cycle 2 observations of roAp stars with 2-min cadence data

    Get PDF
    \ua9 The Author(s) 2023.We present the results of a systematic search of the Transiting Exoplanet Survey Satellite (TESS) 2-min cadence data for new rapidly oscillating Ap (roAp) stars observed during the Cycle 2 phase of its mission. We find seven new roAp stars previously unreported as such and present the analysis of a further 25 roAp stars that are already known. Three of the new stars show multiperiodic pulsations, while all new members are rotationally variable stars, leading to almost 70 per cent (22) of the roAp stars presented being α2 CVn-type variable stars. We show that targeted observations of known chemically peculiar stars are likely to overlook many new roAp stars, and demonstrate that multiepoch observations are necessary to see pulsational behaviour changes. We find a lack of roAp stars close to the blue edge of the theoretical roAp instability strip, and reaffirm that mode instability is observed more frequently with precise, space-based observations. In addition to the Cycle 2 observations, we analyse TESS data for all-known roAp stars. This amounts to 18 further roAp stars observed by TESS. Finally, we list six known roAp stars that TESS is yet to observe. We deduce that the incidence of roAp stars amongst the Ap star population is just 5.5 per cent, raising fundamental questions about the conditions required to excite pulsations in Ap stars. This work, coupled with our previous work on roAp stars in Cycle 1 observations, presents the most comprehensive, homogeneous study of the roAp stars in the TESS nominal mission, with a collection of 112 confirmed roAp stars in total

    Interferometric Observations of Rapidly Rotating Stars

    Full text link
    Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence.Comment: Accepted for publication in A&AR

    TESS Cycle 1 observations of roAp stars with 2-min cadence data

    Get PDF
    We present the results of a systematic search for new rapidly oscillating Ap (roAp) stars using the 2-min cadence data collected by the Transiting Exoplanet Survey Satellite (TESS) during its Cycle 1 observations. We identify 12 new roAp stars. Amongst these stars we discover the roAp star with the longest pulsation period, another with the shortest rotation period, and six with multiperiodic variability. In addition to these new roAp stars, we present an analysis of 44 known roAp stars observed by TESS during Cycle 1, providing the first high-precision and homogeneous sample of a significant fraction of the known roAp stars. The TESS observations have shown that almost 60 per cent (33) of our sample of stars are multiperiodic, providing excellent cases to test models of roAp pulsations, and from which the most rewarding asteroseismic results can be gleaned. We report four cases of the occurrence of rotationally split frequency multiplets that imply different mode geometries for the same degree modes in the same star. This provides a conundrum in applying the oblique pulsator model to the roAp stars. Finally, we report the discovery of non-linear mode interactions in α\alpha Cir (TIC 402546736, HD 128898) around the harmonic of the principal mode -- this is only the second case of such a phenomenon...

    TESS Cycle 2 observations of roAp stars with 2-min cadence data

    Get PDF
    We present the results of a systematic search of the Transiting Exoplanet Survey Satellite (TESS) 2-min cadence data for new rapidly oscillating Ap (roAp) stars observed during the Cycle 2 phase of its mission. We find seven new roAp stars previously unreported as such and present the analysis of a further 25 roAp stars that are already known. Three of the new stars show multiperiodic pulsations, while all new members are rotationally variable stars, leading to almost 70 per cent (22) of the roAp stars presented being α2 CVn-type variable stars. We show that targeted observations of known chemically peculiar stars are likely to overlook many new roAp stars, and demonstrate that multi-epoch observations are necessary to see pulsational behaviour changes. We find a lack of roAp stars close to the blue edge of the theoretical roAp instability strip, and reaffirm that mode instability is observed more frequently with precise, space-based observations. In addition to the Cycle 2 observations, we analyse TESS data for all known roAp stars. This amounts to 18 further roAp stars observed by TESS. Finally, we list six known roAp stars that TESS is yet to observe. We deduce that the incidence of roAp stars amongst the Ap star population is just 5.5 per cent, raising fundamental questions about the conditions required to excite pulsations in Ap stars. This work, coupled with our previous work on roAp stars in Cycle 1 observations, presents the most comprehensive, homogeneous study of the roAp stars in the TESS nominal mission, with a collection of 112 confirmed roAp stars in total

    Lithium on the surface of cool magnetic CP stars. II. Spectrum analysis of HD 83368 and HD 60435 with lithium spots

    Get PDF
    As a further step in our Lithium project we present results of abundance determination of some elements in the roAp star HD 60435. Possible NLTE effects were considered. Equivalent widths of spectral lines vary with rotational phase which suggests nonuniform distribution of chemical elements over the stars' surface. Large abundance differences derived from various ions of some rare earth elements indicate their possible vertical stratification. Two spots of enhanced lithium abundance were distinguished at the magnetic poles on HD 60435 and their parameters derived. The rotational axis inclination i = 133° or 47° and surface magnetic field Hs = 3±1 kG were determined for the first time for HD 60435. The results are compared with HD 83368, the other star with lines of lithium remarkably variable in intensity and wavelength
    corecore