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The temperature dependence of the linear thermal expansion coefficient �(T) has been investigated in

the temperature range of 2.5 to 23 K for two different CH4–C60 solutions in which CH4 molecules occupied

24 and 50% of the octahedral interstitial sites of the C60 lattice. In both cases, �(T) exhibits hysteresis, sug-

gesting the existence of two types of orientational glass associated with these solutions. The temperature of

the first-order phase transition between these two glasses was estimated and the behavior of these two

glasses compared. The characteristic times of thermalization �1, reorientation of the C60 molecules �2, and

of the phase transformation between the glasses ��, have been estimated for these solutions. Both the temper-

ature dependence of �(T) and the characteristic thermalization time �1 are found to have features near the

phase transition temperature and an explanation has been put forward to explain these observed features.

PACS: 74.70.Wz Fullerenes and related materials.

Keywords:thermal expansion, orientational glass, polyamorphism.

Introduction

At temperatures below 90 K, fullerite C60 changes into

the state of an orientational glass [1]. Investigations of the

thermal expansion of such orientational glasses based on

C60 and at the same time being saturated with atomic and

diatomic gases [2–5], has revealed interesting features in

their low-temperature behavior, amongst these being the

first-order phase transition at around liquid helium temper-

atures — the so-called phenomenon of polyamorphism [3].

These investigations of the coexisting orientational glasses

concentrated primarily on the distinctions between the two

glasses, such as the characteristic times of system

thermalization and reorientation of the C60 molecules but

as well as these, the temperature of the phase transition as

well as the characteristic time for phase interconversion

between the glasses, was also studied.

It was found that the temperature of the first-order

phase transition for O2–C60 and N2–C60 glasses occured

in the temperature interval of 4.5–6 K, agreeing well with

theoretical estimates (T � 10 K) [3,6]. Polyamorphism

manifests itself as a hysteresis of the thermal expansion of

the fullerite saturated with gases. The co-existence of two

orientational glasses for a Xe–C60 solution has also been

found to be supported by x-ray phase analysis [7].

In the solutions investigated, it has been found that the

thermal expansion of the more stable glass phase (phase I)

at the relatively lower temperatures of the experiment,

consisted of both positive and negative contributions.

The characteristic time of the positive contribution �1

which describes thermalization (the processes of tempe-

rature equalization over the sample) was little dependent

on either the temperature, or the type or concentration of

the dissolved gas. Put in another way, the thermal conduc-

tivity of the solutions is mainly determined by the C60 ma-

trix, and its structure as an orientational glass. The charac-

teristic time of the negative contribution �2, exceeds �1 in

all measurement runs. The authors believe that �2 describes

the process of reorientation of the C60 molecules and will

be essentially dependent on the type of dissolved gas.
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The thermal expansion of the phase more stable at rela-

tively high temperatures (phase II) had no negative con-

tribution. The times �1 (thermalization) of phases I and II

were practically identical, which suggests that their ther-

mal conductivities are very close. It is important that the

thermalization times �1 had no noticeable features near

the phase transition temperature.

The change from the two-phase glass state to the sin-

gle–phase glass condition was stimulated by thermal

cycling of the system in a narrow temperature interval

(�T ~ 2 K). The characteristic time �� of the transition was

taken as a characteristic time of the phase transformation.

It exceeds both the times of thermalization �1 as well as

that of reorientation of the matrix molecules �2, in all

measurement events.

The features of C60 glasses have been interpreted theo-

retically in [3,6]. Some models with mechanisms have

been proposed [8,9] to explain the reorientation of the

classical C60 molecules at low temperatures. The thermo-

dynamics of the processes in C60 glasses was also

considered in [6].

The aim of these recent studies was to investigate the

effect of an impurity consisting of tetrahedral molecules

(CH4) upon the properties and interconversion kinetics of

orientational C60 glasses. To carry this out, CH4–C60 so-

lutions were prepared with molar CH4 concentrations of

both 24 and 50%.

The choice of CH4 as an impurity was also motivated

for the following reasons. Firstly, the effect of admixed

tetrahedral symmetric molecules upon the thermal expan-

sion of fullerite had so far until these studies, not been in-

vestigated. Secondly, it is naturally to be expected that

molecular symmetry would play a vital role in determin-

ing the interaction between the impurity and host C60

molecules and hence the properties of the solid C60 ma-

trix. Also in the case of CH4, this interaction would be

maximized on account of that the effective diameter of the

CH4 molecule is comparable in size to the octahedral

voids, which the dissolved molecules occupy in the crys-

tal lattice of fullerites [10–12]. It is therefore expected

that the CH4 impurity would deform the C60 lattice con-

siderably, affecting not only the lattice parameter, but also

the glass phase transition temperature, as well as other

properties of fullerite matrix.

Measurement technique and samples

The C60 sample (cylinder 10 mm in diameter and

5,27 mm high) with 24 mol.% CH4 was prepared and ana-

lyzed as follows. Prior to saturation with CH4, the sample

was kept under the condition of dynamic evacuation

(1�10–3 mm Hg, T = 300–400�C, t = 10 days) to remove

gas impurities. The pure C60 sample desaturated by this

procedure was placed into the measuring cell of the

dilatometer. The cell was then filled with CH4 at room

temperature to the pressure 760 mm Hg. The sample re-

mained under this condition for 69 days. Owing to this

doping procedure, the CH4 molecules occupied about

24% of the octahedral voids in the C60 lattice.

The composition and concentration of the gasses dis-

solved in the C60 sample were determined using a low-

temperature vacuum desorption gas analyzer (for design

and operation details see [13]). The results of the analysis

of the gas desorbed after the dilatometric measurements

as a result of stepwise heating of the CH4–C60 samples to

300�C are shown in Fig. 1 and the overall composition is

summarized in the Table. It is seen that most of the CH4

was desorbed by a temperature of 100�C.

Table 1. The composition of the gas mixture (molar fractions

nmol) desorbed from the C60 sample with 24 mol.% CH4.

Gas impurity nmol

CH4 0.93

O2+N2 0.06

CO2 0.01

The methods of preparation and analysis of the C60

sample with 50 mol. % CH4 are described elsewhere [14].

The thermal expansion of the CH4–C60 solutions was

investigated using a low temperature capacitance

dilatometer (for details of the dilatometer design and

measuring technique see [15]). Immediately before the

dilatometric investigation, the measuring cell with the

CH4–C60 sample was cooled slowly down to 70 K. At this

temperature the CH4 that remained unabsorbed by the

sample was removed from the cell. The further cooling

and the subsequent investigations were performed under

a vacuum of no worse than 1�10–5 mm Hg. The thermal

expansion was measured after a four-hour exposure of the

CH4–C60 sample to the temperature of liquid helium.
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Fig. 1. The composition of the gas mixture (percentage of oc-

tahedral void occupancy) desorbed from the C60 sample with

24 mol.% CH4.



Measurement results. Discussion

The temperature dependences of the linear thermal ex-

pansion coefficient (LTEC), �(T) taken from the C60 sam-

ples with 24 mol. % CH4 and 50 mol. % CH4, are shown

in Fig. 2. The dependences were obtained by averaging

the results of several series of experiments.

It is seen that on heating (curves 1, 2) and subsequent

cooling (curves 3, 4) the LTEC has a hysteresis at T > 4 K

(24 mol. % CH4) and T > 3.5 K (50 mol. % CH4). This

hysteresis points to the first-order phase transition be-

tween the orientational glasses. Below either of these re-

spective temperatures, the measured values of �(T) for

heating for and cooling of the respective solutions, are

practically identical. On heating, the thermal expansion

of the CH4–C60 samples consisted of both positive and

negative components with different characteristic times,

�1 and �2, respectively. These components were separated

using the method described in [2,3]. The temperature de-

pendence of the positive and negative contributions to the

LTEC for the samples with 24 mol. % CH4 and 50 mol. %

CH4 are shown in Fig. 3. In contrast to heating, the ther-

mal expansion measured on cooling the samples down

from the highest temperature of the experiment showed

only a positive contribution (curves 3 and 4 in Fig. 2).

The first-order phase transition of the orientational

glasses formed in the O2–C60 and N2–C60 systems occurs

in the temperature interval 4.5–6 K [4,5] (see the Intro-

duction). This was evident from the unstable behavior of

the thermal expansion in this region. On heating the

CH4–C60 samples, �(T) showed a distinct maximum at

4–5.5 K (Fig. 2) and the measured values were rather

poorly reproducible. No such signs of these first-order

phase transition have been observed in other C60 — based

orientational glasses prior to above reported ones.
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Fig. 2. Temperature dependences of linear thermal expansion

coefficient for 24 mol. % CH4–C60 and 50 mol. % CH4–C60

samples in the intervals 2.5–23 K (a) and 2.5–8 K (b): 1 – heat-

ing (50 mol. % CH4); 2 – heating (24 mol. % CH4); 3 – cooling

(50 mol. % CH4); 4 – cooling (24 mol. % CH4); 5 – pure C60

(dotted curve).
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Fig. 3. Temperature dependence of the positive and negative

contributions to the linear thermal expansion coefficient, with

heating , for 50 mol% and 24 mol%, CH4–C60 solutions: T =

= 2.5–23 K (a), T = 2.5–8 K (b): 1 – positive contribution

(50 mol % CH4); 2 – positive contribution (24 mol. % CH4);

3 – negative contribution (50 mol. % CH4); 4 – negative con-

tribution (24 mol. % CH4); 5 – pure C60 (dotted line).



Note that the above feature exists only for the positive

contribution to the thermal expansion (Fig. 3). It is there-

fore reasonable to expect that the temperature depend-

ence of the characteristic time �1 of the positive contribu-

tion to thermal expansion also will have a feature in this

temperature region. This assumption is indeed supported

by the analysis of the T dependence of �1(T) and �2(T).

Since the positive component characterizes thermali-

zation of the sample [2,3], its characteristic time �1 in-

creases drastically near the temperature of the orien-

tational phase transition because the formation of the new

phase consumes heat and thus prolongs the time for tem-

perature equalization over the sample volume (Fig. 4).

There is another interesting feature that was not regis-

tered in previously studied C60 solutions, namely that the

�1 of the 50 mol. % CH4–C60 sample far exceeds �1 of

pure C60. It is natural to assume that the high-concentra-

tion CH4 can deform the C60 lattice significantly produc-

ing micro cracking in the sample, which in turn can in-

crease the thermal resistance of the sample and hence the

thermalization time �1. Note that the thermal expansion of

a cubic-symmetry sample is isotropic and indifferent to

micro cracking in the sample.

In contrast to the above, the characteristic time �2, of

the negative component of the LTEC is found to be weakly

dependent on temperature (see Fig. 5), which is consis-

tent with the theoretical conclusions reached in [3]. In this

study, we observed for the first time a strong dependence

of �2 on the concentration of the gas dissolved in C60.

To investigate the relative stability of the orientational

CH4–C60 glasses at different temperatures T, we mea-

sured the time dependence of the thermal expansion coef-

ficient of the CH4–C60 samples in the process of thermal

cycling in a narrow interval T ± �T, where �T is no more

than 2 K. The details of the technique are described previ-

ously [2,3]. The thermal cycling in the interval 5.5–23 K

shifted the LTEC values from curves 1 and 2 to curves 3

and 4, respectively (Fig. 2), which suggests a higher sta-

bility of the «high-temperature» phase II, over this ther-

mal cycling interval.

We have also estimated the characteristic time �� of the

phase transition between the two orientational CH4–C60

glasses. The technique of estimation has previously been

described in [2,3]. The obtained temperature dependence

of the characteristic time ��, of phase transition, for both

CH4–C60 solutions, are shown in Fig. 6. The ��-values are

found to be little dependent on the CH4 concentration.
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Fig. 4. Characteristic time �1 of positive contributions to the ther-

mal expansion of CH4–C60 samples with 50 mol. % CH4 (x),

24 mol. % CH4 (�� and pure C60 (�).
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Fig. 6. Temperature dependences of the characteristic time �� of

phase transition in orientational CH4–C60, N2–C60 and O2–C60

glasses [4,5]. I–II phase transition: 50 mol. % CH4–C60 (�),

24 mol. % CH4–C60 (�), 100 mol. % N2–C60 (�), 80 mol. %

O2–C60 (�).
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Fig. 5. Characteristic time �2 of negative contributions to ther-

mal expansion of C60 samples with 50 mol. % CH4 (�) and

24 mol. % CH4 (�).



For comparison, Fig. 6 illustrates the corresponding de-

pendence as measured for the N2–C60 and O2–C60 solu-

tions, which have linear impurity molecules [4,5].

It is interesting to note that in contrast to the N2–C60

and O2–C60 solutions [4,5], the dependence ��(T) of the

orientational CH4–C60 glasses for both solutions, exhibit

no maxima (see Fig. 6). This behavior of the temperature

dependence of the characteristic phase transition time

��(T) for CH4–C60, may be determined by the rotational

dynamics of the CH4 impurity in the octahedral voids of

the crystal lattice of fullerite [16].

Conclusions

The first-order phase transition was observed in the

solutions formed by dissolving CH4 in orientationally

disordered C60 at liquid helium temperatures. The ther-

mal expansion of one of the coexisting orientational

CH4–C60 glasses (phase I) was found to contain a nega-

tive contribution. Earlier, similar results were obtained on

C60 saturated with He, Kr, Xe, H2, D2, N2, O2 [2–5].

It is first observed that the temperature dependence of

the positive component of the thermal expansion and the

characteristic time �1 of phase I have maxima which are

interpreted as indications of the first-order phase transi-

tion between the orientational glasses. The significant de-

formation of the C60 lattice by the dissolved CH4 is also

evident from the concentration dependence of this char-

acteristic thermalization time �1 for the CH4–C60 sample.

In contrast to the N2–C60 and O2–C60 solutions [4,5],

the characteristic phase transformation time �� in the

CH4–C60 solutions decreases monotonously with increas-

ing temperature.

The coexisting glasses formed in gas-fullerite solu-

tions differ in the orientation of the C60 molecules. It is

therefore reasonable to expect a certain correlation be-

tween the characteristic time �2 of reorientation of C60

molecules and the characteristic time �� of the mutual

glass phase transition. However, this sort of correlation

was not found in previous investigations [2–5]. There is

no evidence of such correlation for CH4–C60 either (see

Figs. 5, 6). The absence of �2 – �� correlation agrees with

the speculations reached in the theoretical studies [6,8,9].

The authors assume that the characteristic time �2 de-

scribes only the reorientation of the C60 molecules dis-

posed between the domains, whereas the C60 molecules

disposed inside the domains have a certain invariant ori-

entation. The characteristic times of the phase transition

�� describe the changes in the orientation of the C60 mole-

cules inside the domains. Thus, �2 and �� are associated

with processes that are not connected directly.
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