306 research outputs found

    Last interglacial sea-level proxies in the glaciated Northern Hemisphere

    Get PDF
    Because global sea level during the last interglacial (LIG; 130–115 ka) was higher than today, the LIG is a useful approximate analogue for improving predictions of future sea-level rise. Here, we synthesize sea-level proxies for the LIG in the glaciated Northern Hemisphere for inclusion in the World Atlas of Last Interglacial Shorelines (WALIS) database. We describe 82 sites from Russia, northern Europe, Greenland and North America from a variety of settings, including boreholes, riverbank exposures and along coastal cliffs. Marine sediments at these sites were constrained to the LIG using a variety of radiometric methods (radiocarbon, uranium–thorium, potassium–argon), non-radiometric methods (amino acid dating, luminescence methods, electron spin resonance, tephrochronology) as well as various stratigraphic and palaeo-environmental approaches. In general, the sites reported in this paper do not offer constraint on the global LIG highstand, but rather evidence of glacial isostatic adjustment (GIA)-influenced sea-level positions following the Marine Isotope Stage 6 glaciation (MIS 6; 191–130 ka). Most of the proxies suggest that sea level was much higher during the LIG than at the present time. Moreover, many of the sites show evidence of regression due to sea-level fall (owing to glacial isostatic uplift), and some also show fluctuations that may reflect regrowth of continental ice or increased influence of the global sea-level signal. In addition to documenting LIG sea-level sites in a large swath of the Northern Hemisphere, this compilation is highly relevant for reconstructing the size of MIS 6 ice sheets through GIA modelling. The database is available at https://doi.org/10.5281/zenodo.5602212 (Dalton et al., 2021).publishedVersio

    Reply to: Towards solving the missing ice problem and the importance of rigorous model data comparisons

    Get PDF
    Our recent ice sheet reconstruction, PaleoMIST 1.0, was created on the basis of using near-field (i.e., ice sheet proximal) geological constraints. This was done so that it would be independent of far-field relative sea level observations, that are subject to uncertainties in the global distribution of ice, and deep sea proxy based global mean sea level reconstructions, which have large uncertainties due to temperature and salinity effects. We do not disagree with the interpretation of the far-field data highlighted by Yokoyama et al., but emphasise that near-field constraints should be the starting point for reconstructing ice sheets

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Reflection of Scandinavian Ice Sheet Fluctuations in Norwegian Sea Sediments during the Past 150,000 Years

    Get PDF
    The record of glacier fluctuations in western Scandinavia, as reconstructed from continental data, has been correlated with records of ice-rafted detritus (IRD) from well-dated sediment cores from the Norwegian Sea covering the past 150,000 yr B.P. The input of IRD into the ocean is used as a proxy for ice sheet advances onto the shelf and, thus, for the calibration of a glaciation curve. The marine results generally support land-based reconstructions of glacier fluctuations and improve the time-control on glacial advances. The Saalian ice sheet decayed very rapidly approximately 125,000 yr B.P. In the Early Weichselian, a minor but significant IRD maximum indicates the presence of icebergs in isotope substage 5b (especially between 95,000 and 83,000 yr B.P.). Reduced amounts of calcareous nannofossils indicate that surface waters were influenced by meltwater discharges during isotope substages 5d and 5b. An extensive build-up of inland ice began again during isotope stage 4, but maximum glaciation was reached only in early stage 3 (58,000-53,000 yr B.P.). Marine sediments have minimum carbonate content, indicating strong dilution by lithogenic ice-rafted material. Generally, the IRD accumulation rate was considerably higher in stages 4-2 than in stage 5. A marked peak in IRD accumulation rates from 47,000 to 43,000 yr B.P. correlates well with a second Middle Weichselian ice sheet advance dated by the Laschamp/Olby paleomagnetic event. Minimum ice extent during the Ålesund interstade (38,500-32,500 yr B.P.) and several glacial oscillations during the Late Weichselian are also seen in the IRD record. Of several late Weichselian glacial oscillations on the shelf, at least four correspond to the North Atlantic Heinrich events. Ice sheet behavior was either coupled or linked by external forcing during these events, whereas internal ice sheet mechanisms may account for the noncoherent fluctuations

    Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years

    Get PDF
    The Arctic Ocean has an important role in Earth’s climate, both through surface processes such as sea-ice formation and transport, and through the production and export of waters at depth that contribute to the global thermohaline circulation. Deciphering the deep Arctic Ocean’s palaeo-oceanographic history is a crucial part of understanding its role in climatic change. Here we show that sedimentary ratios of the radionuclides thorium-230 (230Th) and protactinium-231 (231Pa), which are produced in sea water and removed by particle scavenging on timescales of decades to centuries, respectively, record consistent evidence for the export of 231Pa from the deep Arctic and may indicate continuous deep-water exchange between the Arctic and Atlantic oceans throughout the past 35,000 years. Seven well-dated box-core records provide a comprehensive overview of 231Pa and 230Th burial in Arctic sediments during glacial, deglacial and interglacial conditions. Sedimentary 231Pa/230Th ratios decrease nearly linearly with increasing water depth above the core sites, indicating efficient particle scavenging in the upper water column and greater influence of removal by lateral transport at depth. Although the measured 230Th burial is in balance with its production in Arctic sea water, integrated depth profiles for all time intervals reveal a deficit in 231Pa burial that can be balanced only by lateral export in the water column. Because no enhanced sink for 231Pa has yet been found in the Arctic, our records suggest that deep-water exchange through the Fram strait may export 231Pa. Such export may have continued for the past 35,000 years, suggesting a century-scale replacement time for deep waters in the Arctic Ocean since the most recent glaciation and a persistent contribution of Arctic waters to the global ocean circulation

    Centennial climate variability in the British Isles during the mid-late Holocene

    Get PDF
    Reproduced with permission of the publisher. Copyright © 2010 Elsevier LtdMulti-millennial climate changes were relatively minor over the mid–late Holocene in the British Isles, because orbitally forced insolation changes were smaller than those at higher latitudes. Centennial climate variability is thus likely to have exerted a greater influence on the environment and human society of the region. Proxy-climate records from the British Isles covering the last 4500 years are assembled and re-evaluated with the aim of identifying centennial climate variability reflected by multi-proxy indicators. The proxies include bog oak populations, peatland surface wetness, flooding episodes from fluvial deposits, speleothem annual band width and oxygen isotopes, chironomids from lake sediments and sand and dune deposition. Most proxies reflect water balance rather than temperature alone, and records predominantly reflect warm season climate. A series of 12 key periods of enhanced precipitation–evaporation (P-E) are identified by their presence in two or more proxy records. Variability in P-E is much greater than that shown by temperature proxies and there is no necessary association between warm/cool and dry/wet periods. Although the data for temperature are less robust than those for P-E, a series of key temperature changes are proposed based on speleothem ÎŽ18O and chironomid inferred July temperature records; relatively cool before c. 3100 years BP, warmer (3100–2000 years BP), cool (2000–1250 cal years BP), warm (1250–650 cal years BP), and cool (650 cal years BP onwards). Some key increases in P-E (2750, 1650, 550 cal years BP) show a strong correspondence with ‘Bond cycles’ in ocean proxy records for increased ice rafted debris, decreased summer sea surface temperatures and sometimes decreased North Atlantic deep water circulation. Other higher frequency changes in P-E are also strongly related to SST variability. Whilst some of the main changes to cooler SSTs and increased P-E are approximately coincident with reduced solar output, most are not and thus must be the result of the internal dynamics of the ocean and atmosphere. Future work should concentrate on firmly establishing the pattern of temperature change, improving chronological accuracy and precision in existing records and improving process-based understanding of proxies
    • 

    corecore