171 research outputs found

    The Proper Splicing of RNAi Factors Is Critical for Pericentric Heterochromatin Assembly in Fission Yeast

    Get PDF
    Heterochromatin preferentially assembles at repetitive DNA elements, playing roles in transcriptional silencing, recombination suppression, and chromosome segregation. The RNAi machinery is required for heterochromatin assembly in a diverse range of organisms. In fission yeast, RNA splicing factors are also required for pericentric heterochromatin assembly, and a prevailing model is that splicing factors provide a platform for siRNA generation independently of their splicing activity. Here, by screening the fission yeast deletion library, we discovered four novel splicing factors that are required for pericentric heterochromatin assembly. Sequencing total cellular RNAs from the strongest of these mutants, cwf14Δ, showed intron retention in mRNAs of several RNAi factors. Moreover, introducing cDNA versions of RNAi factors significantly restored pericentric heterochromatin in splicing mutants. We also found that mutations of splicing factors resulted in defective telomeric heterochromatin assembly and mis-splicing the mRNA of shelterin component Tpz1, and that replacement of tpz1+ with its cDNA partially rescued heterochromatin defects at telomeres in splicing mutants. Thus, proper splicing of RNAi and shelterin factors contributes to heterochromatin assembly at pericentric regions and telomeres

    Is eco-efficiency in greenhouse gas emissions converging among European Union countries?

    Get PDF
    Eco-efficiency refers to the ability to produce more goods and services with less impact on the environment and less consumption of natural resources. This issue has become a matter of concern that is receiving increasing attention from politicians, scientists and researchers. Furthermore, greenhouse gases emitted as a result of production processes have a marked impact on the environment and are also the foremost culprit of global warming and climate change. This paper assesses convergence in eco-efficiency in greenhouse gas emissions in the European Union. Eco-efficiency is assessed at both country and greenhouse-gas-specific levels using Data Envelopment Analysis techniques and directional distance functions, as recently proposed by Picazo-Tadeo et al. (Eur J Oper Res, 220:798–809, 2012). Convergence is then evaluated using the Phillips and Sul (Econometrica, 75:1771–1855, 2007) approach that allows testing for the existence of convergence groups. Although the results point to the existence of different convergence clubs depending on the specific pollutant considered, they signal the existence of at least four clear groups of countries. The first two groups are core European Union high-income countries (Benelux, Germany, Italy, Austria, the United Kingdom and Scandinavian countries). A third club is made up of peripheral countries (Spain, Ireland, Portugal and Greece) together with some Eastern countries (Latvia and Slovenia), while the remaining clubs consist of groups containing Eastern European countries

    Histología y Citología de Cítricos

    Get PDF
    El cultivo de los cítricos es una tradición muy arraigada en toda la cuenca mediterránea. Esta práctica supone una fuente apreciable de riqueza para los habitantes de las comarcas o regiones que la explotan comercialmente. El estudio de los cítricos en España comenzó a principios del siglo pasado en torno a la Granja Agrícola de Burjassot, concretamente en la Estación Naranjera de Levante, una institución pionera constituida en el año 1931 y dedicada íntegramente a tal fin. Con posterioridad, a mitad de los años 70, el personal de la Estación se trasladó a otras instalaciones más modernas y espaciosas, localizadas en Montcada, que hoy conocemos como Instituto Valenciano de Investigaciones Agrarias (IVIA). En este Instituto se continúa profundizando hoy día en el conocimiento y en la mejora del cultivo de los cítricos. Los trabajos de histología y citología interesaron al Dr. Eduardo Primo Millo desde su inicio en el mundo de la investigación agraria. Suya fue la idea de, con el paso del tiempo, recopilar las aportaciones que su equipo venía realizando en este campo. Una antigua iniciativa que hoy se materializa en esta "Histología y Citología de Cítricos". Este texto comienza con la descripción tanto de las estructuras y de los sistemas membranosos que pueden contener las células como de los diferentes tejidos que componen un cítrico. A continuación se aborda la germinación de la semilla, un complejo proceso de degradación y movilización de reservas nutritivas que permitirán el crecimiento de estructuras vegetativas vitales para la planta: el tallo y la raíz. El estudio de la porción enterrada de la planta, la raíz, comienza con su ontogenia y su estructura primaria y prosigue incidiendo sobre su crecimiento secundario y su ramificación, así como sobre el papel que algunas fitohormonas pueden tener en estos procesos. La descripción del tallo, en particular de su sistema vascular, y de la hoja, se aborda haciendo hincapié en los cambios que experimenta la anatomía foliar en condiciones medioambientales que inducen estrés en los cítricos, como por ejemplo la salinidad. Para finalizar se describe la morfología y la anatomía de las estructuras reproductivas de los cítricos repasando los cambios anatómicos y ultraestructurales que se producen en las distintas partes de la flor y en el fruto durante los procesos de floración y de fructificación. La mayoría de las descripciones anatómicas, histológicas y ultraestructurales que aparecen en este texto están ilustradas con imágenes obtenidas en la investigación realizada en el Laboratorio de Fisiología Vegetal del Departamento de Citricultura y Otros Frutales del IVIA

    Three Stages of Lysozyme Thermal Stabilization by High and Medium Charge Density Anions

    Get PDF
    Addition of high and medium charge density anions (phosphate, sulfate, and chloride) to lysozyme in pure water demonstrates three stages for stabilization of the protein structure. The first two stages have a minor impact on lysozyme stability and are probably associated with direct interaction of the ions with charged and partial charges on the protein’s surface. There is a clear transition between the second and third stages; in the case of sodium chloride, disodium sulfate and disodium hydrogen phosphate this is at 550, 210, and 120 mM, respectively. Stabilization of lysozyme can be explained by the free energy required to hydrate the protein as it unfolds. At low ion concentrations, the protein’s hydration layer is at equilibrium with the bulk water. After the transition, bulk water is depleted and the protein is competing for water with the ions. With competition for water between the protein and the ions at higher salt concentrations, the free energy required to hydrate the interior of the protein rises and it is this that stabilizes the protein structure

    Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields

    Full text link
    [EN] The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography mass spectrometry (GC MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p&#8201;<&#8201;0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations &#8804;57.0 ng g&#8722;1 before plow and &#8804;62.3 ng g&#8722;1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water from WWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.Authors wish to thank INIA for the predoctoral fellowship (R. Aznar) and Spanish Ministry of Economy and Competitiveness RTA2014-00012-C03-01 for financial support and Jonathan Villanueva Martin for his contribution to this work.Aznar, R.; Moreno-Ramón, H.; Albero, B.; Sánchez Brunete, C.; Tadeo, JL. (2016). Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. Journal of Soils and Sediments. 17(5):1503-1513. https://doi.org/10.1007/s11368-016-1417-2S15031513175Albaseer SS, Rao RN, Swamy YV, Mukkanti K (2010) An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A 1217(35):5537–5554Alonso MB, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JPM, Lailson-Brito J, Malm O, Eljarrat E, Barcelo D (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24(4):966–972Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Eco Environ 123(4):247–260Aznar R, Albero B, Sanchez-Brunete C, Miguel E, Tadeo JL (2014) Multiresidue analysis of insecticides and other selected environmental contaminants in poultry manure by gas chromatography/mass spectrometry. J AOAC Int 97(4):978–986Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157European Commission (2002) Review report for the active substance Cyfluthrin, 6843/VI/97-finalEuropean Commission (2004) Review report for the active substance α-Cypermethrin, SANCO/4335/2000-finalEuropean Commission (2005) Review report for the active substance Esfenvalerate, 6846/VI/97-finalFeo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393(3-4):156–162Fojut TL, Palumbo AJ, Tjeerdema RS (2012) Aquatic life water quality criteria derived via the UC Davis method: II. Pyrethroid insecticides. Rev Environ Contam Toxicol 216:51–103Gan J, Lee SJ, Liu WP, Haver DL, KAbashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841Hill IR (1985) Aquatic organisms and pyrethroids. Pestic Sci 27:429–465Huang LM, Thompson A, Zhang GL, Chen LM, Han GZ, Gong ZT (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237:199–210Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–189Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170Mahabali S, Spagnoghe P (2014) Mitigation of two insecticides by wetlands plants: feasibility study for the treatment of agricultural runoff in Suriname (South America). Water Air Soil Pollut 225:1771Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21(1):9–15Maund SJ, Campbell PJ, Giddings JM, Hamer MJ, Henry K, Pilling ED, Warinton JS, Wheeler JR (2012) Ecotoxicology of synthetic pyrethroids. Top Curr Chem 314:137–165Money E, Carter GP, Serre ML (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43(7):1948–1958Moore MT, Cooper CM, Smith S, Jr Cullum RF, Knight SS, Locke MA, Bennett ER (2009) Mitigation of two pyrethroid insecticides in Mississippi Delta constructed wetland. Environ Pollut 157:250–256Moreno-Ramón H, Marqués-Mateu A, Ibáñez-Asensio S, Gisbert JM (2015) Wetland soils under rice management and seawater intrusion: characterization and classification. Spa J Soil Sci 5(2):111–129Nawaz MF, Bourrie G, Trolard F, Mouret JC, Henry P (2013) Effects of agronomic practices on the physico-chemical properties of soil waters in rice culture. Turk J Agric For 37(2):195–202Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland, CAPascual-Aguilar J, Andreu V, Gimeno-Garcia E, Pico Y (2015) Current anthropogenic pressures on agro-ecological protected coastal wetlands. Sci Total Environ 03:190–199Soil Survey Staff (2014a) Soil survey field and laboratory methods manual. Soil survey investigations report no. 51, version 2.0. In: Burt R, Soil Survey Staff (eds). U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, p 407Soil Survey Staff (ed) (2014b) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, p 372Song Y, Kai J, Song X, Zhang W, Li L (2015) Long-term toxic effects of deltamethrin and fenvalerate in soil. J Hazard Mater 289:158–164Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39(24):9778–9784Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32(11):2460–2468Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–110

    The global contribution of soil mosses to ecosystem services

    Get PDF
    Soil mosses are among the most widely distributed organisms on land. Experiments and observations suggest that they contribute to terrestrial soil biodiversity and function, yet their ecological contribution to soil has never been assessed globally under natural conditions. Here we conducted the most comprehensive global standardized field study to quantify how soil mosses influence 8 ecosystem services associated with 24 soil biodiversity and functional attributes across wide environmental gradients from all continents. We found that soil mosses are associated with greater carbon sequestration, pool sizes for key nutrients and organic matter decomposition rates but a lower proportion of soil-borne plant pathogens than unvegetated soils. Mosses are especially important for supporting multiple ecosystem services where vascular-plant cover is low. Globally, soil mosses potentially support 6.43 Gt more carbon in the soil layer than do bare soils. The amount of soil carbon associated with mosses is up to six times the annual global carbon emissions from any altered land use globally. The largest positive contribution of mosses to soils occurs under a high cover of mat and turf mosses, in less-productive ecosystems and on sandy and salty soils. Our results highlight the contribution of mosses to soil life and functions and the need to conserve these important organisms to support healthy soils.The study work associated with this paper was funded by a Large Research Grant from the British Ecological Society (no. LRB17\1019; MUSGONET). D.J.E. is supported by the Hermon Slade Foundation. M.D.-B. was supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I), a project from the Spanish Ministry of Science and Innovation for the I + D + i (PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033a) and a project PAIDI 2020 from the Junta de Andalucía (P20_00879). E.G. is supported by the European Research Council grant agreement 647038 (BIODESERT). M.B. is supported by a Ramón y Cajal grant from Spanish Ministry of Science (RYC2021-031797-I). A.d.l.R is supported by the AEI project PID2019-105469RB-C22. L.W. and Jianyong Wang are supported by the Program for Introducing Talents to Universities (B16011) and the Ministry of Education Innovation Team Development Plan (2013-373). The contributions of T.G. and T.U.N. were supported by the Research Program in Forest Biology, Ecology and Technology (P4-0107) and the research projects J4-3098 and J4-4547 of the Slovenian Research Agency. The contribution of P.B.R. was supported by the NSF Biological Integration Institutes grant DBI-2021898. J. Durán and A. Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC)

    The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    Get PDF
    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.This work was supported by grants from the Norwegian Cancer Society (to ØH), Junta de Andalucía, grant CVI-02483 (to JMSR), The Research Council of Norway (grant 185181 to A.M.), the Western Norway Health Authorities (grant 911618 to A.M.) and The Kristian Gerhard Jebsen Foundation (to AM)

    Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide

    Get PDF
    12 páginas.- 4 figuras.- 49 referencia.- Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41558-023-01646-z .- Full-text access to a view-only version (Acceso a texto completo de sólo lectura en este enlace) https://rdcu.be/c8vZiUrban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.This study was supported by a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (URBANFUN), and by BES Grant Agreement No. LRB17\1019 (MUSGONET). M.D-B., P.G-P., J.D. and A.R. acknowledge support from TED2021-130908B-C41/AEI/10.13039/501100011033/ Unión Europea NextGenerationEU/PRTR. M.D.-B. also acknowledges support from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. was also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación’) associated with the research project P20_00879 (ANDABIOMA). D.J.E. was supported by the Hermon Slade Foundation. J.P.V. thanks the Science and Engineering Research Board (SERB) (EEQ/2021/001083, SIR/2022/000626) and the Department of Science and Technology (DST), India (DST/INT/SL/P-31/2021) and Banaras Hindu Univeristy-IoE (6031)-incentive grant for financial assistance for research in plant-microbe interaction and soil microbiome. J.D. and A. Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC).Peer reviewe
    corecore