36 research outputs found

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Chromosomal phylogeny and evolution of the African mole-rats (Bathyergidae)

    No full text
    International audienceThe subterranean African mole-rats (Family Bathyergidae) show considerable variation in their diploid numbers, but there is limited understanding of the events that shaped the extant karyotypes. Here we investigate chromosomal evolution in specimens representative of six genera and an outgroup species, the cane rat Thryonomys swinderianus, using flow-sorted painting probes isolated from the naked mole-rat, Heterocephalus glaber (2n = 60). A chromosomal phylogeny based on the cladistic analysis of adjacent syntenies detected by cross-species chromosome painting was not consistent with that obtained using DNA sequences due, in large part, to the conserved nature of the Bathyergus, Georychus and Cryptomys karyotypes. In marked contrast, the Fukomys and Heliophobius species showed extensive chromosome reshuffling, permitting their analysis by a computational approach that has conventionally been employed in comparative genomic studies for retrieving phylogenetic information based on DNA sequence or gene order data. Using the multiple genome rearrangements (MGR) algorithm and chromosomal rearrangement data detected among F. damarensis, F. darlingi, F. mechowi and the sister taxa B. janetta and Heliophobius argenteocinereus, cytogenetic support for the monophyly of Fukomys and a sister association for F. darlingi  + F. damarensis was retrieved, mirroring the published sequence-based topology. We show that F. damarensis, a lineage adapted to arid and climatically unpredictable environments in Southern Africa, is characterized by a large number of fissions the fixation of which has probably been favoured by environmental factors and/or its particular eusocial structure

    Dissection of a Y-autosome translocation in Cryptomys hottentotus (Rodentia, Bathyergidae) and implications for the evolution of a meiotic sex chromosome chain

    No full text
    International audienceWe describe the outcome of a comprehensive cytogenetic survey of the common mole-rat, Cryptomys hottentotus, based on G and C banding, fluorescence in situ hybridisation and the analysis of meiotic chromosomes using immunostaining of proteins involved in the formation of synaptonemal complex (SCP1 and SCP3). We identified the presence of a Y-autosome translocation that is responsible for a fixed diploid number difference between males (2n=53) and females (2n=54), a character that likely defines the C. hottentotus lineage. Immunostaining, combined with C banding of spermatocytes, revealed a linearised sex trivalent with X-1 at one end and X-2 at the other, with evidence of reduced recombination between Y and X-2 that seems to be heterochromatin dependant in the C. hottentotus lineage. We suggest that this could depict the likely initial step in the differentiation of a true neo-X, and that this may mimic an early stage in the mammalian meiotic chain formation, an evolutionary process that has been taken to an extreme in a monotreme mammal, the platypus

    Complex evolution of X and Y autosomal translocations in the giant mole-rat, Cryptomys mechowi (Bathyergidae)

    No full text
    International audienceCross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals
    corecore