118 research outputs found
Evidence for J and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages
We argue that classical T Tauri stars (cTTs) possess significant non-
photospheric excess in the J and H bands. We first show that normalizing the
spectral energy distributions (SEDs) of cTTs to the J-band leads to a poor fit
of the optical fluxes, while normalizing the SEDs to the Ic-band produces a
better fit to the optical bands and in many cases reveals the presence of a
considerable excess at J and H. NIR spectroscopic veiling measurements from the
literature support this result. We find that J and H-band excesses correlate
well with the K-band excess, and that the J-K and H-K colors of the excess
emission are consistent with that of a black body at the dust sublimation
temperature (~ 1500-2000 K). We propose that this near-IR excess originates at
a hot inner rim, analogous to those suggested to explain the near-IR bump in
the SEDs of Herbig Ae/Be stars. To test our hypothesis, we use the model
presented by Dullemond et al. (2001) to fit the photometry data between 0.5 um
and 24 um of 10 cTTs associated with the Chamaeleon II molecular cloud. The
models that best fit the data are those where the inner radius of the disk is
larger than expected for a rim in thermal equilibrium with the photospheric
radiation field alone. In particular, we find that large inner rims are
necessary to account for the mid infrared fluxes (3.6-8.0 um) obtained by the
Spitzer Space Telescope. Finally, we argue that deriving the stellar
luminosities of cTTs by making bolometric corrections to the J-band fluxes
systematically overestimates these luminosities. The overestimated luminosities
translate into underestimated ages when the stars are placed in the H-R
diagram. Thus, the results presented herein have important implications for the
dissipation timescale of inner accretion disks.Comment: 45 pages, 13 figure
Probing protoplanetary disks with silicate emission: Where is the silicate emission zone?
Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with the spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 ΞΌm silicate feature peak-to-continuum and 11.3 to 9.8 ΞΌm flux ratios, is inversely proportional to log Lsstarf. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R10, of the 10 ΞΌm silicate emission zone in the disk goes as (L*/Lβ)^0.56, with slight variations depending on disk geometry (flaring angle and inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a dependence of grain size on luminosity. Combined with the fact that R10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminosity sources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T > 800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands
Modeling Spitzer observations of VV Ser. I. The circumstellar disk of a UX Orionis star
We present mid-infrared Spitzer-IRS spectra of the well-known UX Orionis star
VV Ser. We combine the Spitzer data with interferometric and spectroscopic data
from the literature covering UV to submillimeter wavelengths. The full set of
data are modeled by a two-dimensional axisymmetric Monte Carlo radiative
transfer code. The model is used to test the prediction of (Dullemond et al.
2003) that disks around UX Orionis stars must have a self-shadowed shape, and
that these disks are seen nearly edge-on, looking just over the edge of a
puffed-up inner rim, formed roughly at the dust sublimation radius. We find
that a single, relatively simple model is consistent with all the available
observational constraints spanning 4 orders of magnitude in wavelength and
spatial scales, providing strong support for this interpretation of UX Orionis
stars. The grains in the upper layers of the puffed-up inner rim must be small
(0.01-0.4 micron) to reproduce the colors (R_V ~ 3.6) of the extinction events,
while the shape and strength of the mid-infrared silicate emission features
indicate that grains in the outer disk (> 1-2 AU) are somewhat larger (0.3-3.0
micron). From the model fit, the location of the puffed-up inner rim is
estimated to be at a dust temperature of 1500 K or at 0.7-0.8 AU for small
grains. This is almost twice the rim radius estimated from near-infrared
interferometry. A best fitting model for the inner rim in which large grains in
the disk mid-plane reach to within 0.25 AU of the star, while small grains in
the disk surface create a puffed-up inner rim at ~0.7-0.8 AU, is able to
reproduce all the data, including the near-infrared visibilities. [Abstract
abridged]Comment: 12 pages, accepted for publication in Ap
C2D Spitzer-IRS spectra of disks around T Tauri stars V. Spectral decomposition
(Abridged) Dust particles evolve in size and lattice structure in
protoplanetary disks, due to coagulation, fragmentation and crystallization,
and are radially and vertically mixed in disks. This paper aims at determining
the mineralogical composition and size distribution of the dust grains in disks
around 58 T Tauri stars observed with Spitzer/IRS. We present a spectral
decomposition model that reproduces the IRS spectra over the full spectral
range. The model assumes two dust populations: a warm component responsible for
the 10\mu m emission arising from the disk inner regions and a colder component
responsible for the 20-30\mu m emission, arising from more distant regions. We
show evidence for a significant size distribution flattening compared to the
typical MRN distribution, providing an explanation for the usual boxy 10\mu m
feature profile generally observed. We reexamine the crystallinity paradox,
observationally identified by Olofsson et al. (2009), and we find a
simultaneous enrichment of the crystallinity in both the warm and cold regions,
while grain sizes in both components are uncorrelated. Our modeling results do
not show evidence for any correlations between the crystallinity and either the
star spectral type, or the X-ray luminosity (for a subset of the sample). The
size distribution flattening may suggests that grain coagulation is a slightly
more effective process than fragmentation in disk atmospheres, and that this
imbalance may last over most of the T Tauri phase. This result may also point
toward small grain depletion via strong stellar winds or radiation pressure in
the upper layers of disk. The non negligible cold crystallinity fractions
suggests efficient radial mixing processes in order to distribute crystalline
grains at large distances from the central object, along with possible nebular
shocks in outer regions of disks that can thermally anneal amorphous grains
Millimeter Dust Emission in the GQ Lup System
We present Submillimeter Array observations of the GQ Lup system at 1.3
millimeters wavelength with 0\farcs4 (60 AU) resolution. Emission is
detected from the position of the primary star, GQ Lup A, and is marginally
resolved. No emission is detected from the substellar companion, GQ Lup B,
0\farcs7 away. These data, together with models of the spectral energy
distribution, suggest a compact disk around GQ Lup A with mass
M, perhaps truncated by tidal forces. There is no evidence for a gap or
hole in the disk that might be the signature of an additional inner companion
body capable of scattering GQ Lup B out to AU separation from GQ Lup
A. For GQ Lup B to have formed {\it in situ}, the disk would have to have been
much more massive and extended.Comment: 16 pages, 2 figures, accepted to A
C2D Spitzer-IRS spectra of disks around T Tauri stars: IV. Crystalline silicates
Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96).
Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 ΞΌm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object.
Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at Ξ» > 20 ΞΌm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 ΞΌm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (β€1 AU) emitting at ~ 10 ΞΌm and a much colder region emitting at Ξ» > 20 ΞΌm (β€10 AU). We identify a crystallinity paradox, as the long-wavelength (Ξ» > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (Ξ» ~ 10 ΞΌm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 ΞΌm feature and the crystalline feature around 23 ΞΌm provides evidence for the prevalence of ΞΌm-sized (amorphous and crystalline) grains in upper layers of disks.
Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of ΞΌm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure
Hot Organic Molecules Toward a Young Low-Mass Star: A Look at Inner Disk Chemistry
Spitzer Space Telescope spectra of the low mass young stellar object (YSO)
IRS 46 (L_bol ~ 0.6 L_sun) in Ophiuchus reveal strong vibration-rotation
absorption bands of gaseous C2H2, HCN, and CO2. This is the only source out of
a sample of ~100 YSO's that shows these features and the first time they are
seen in the spectrum of a solar-mass YSO. Analysis of the Spitzer data combined
with Keck L- and M-band spectra gives excitation temperatures of > 350 K and
abundances of 10(-6)-10(-5) with respect to H2, orders of magnitude higher than
those found in cold clouds. In spite of this high abundance, the HCN J=4-3 line
is barely detected with the James Clerk Maxwell Telescope, indicating a source
diameter less than 13 AU. The (sub)millimeter continuum emission and the
absence of scattered light in near-infrared images limits the mass and
temperature of any remnant collapse envelope to less than 0.01 M_sun and 100 K,
respectively. This excludes a hot-core type region as found in high-mass YSO's.
The most plausible origin of this hot gas rich in organic molecules is in the
inner (<6 AU radius) region of the disk around IRS 46, either the disk itself
or a disk wind. A nearly edge-on 2-D disk model fits the spectral energy
distribution (SED) and gives a column of dense warm gas along the line of sight
that is consistent with the absorption data. These data illustrate the unique
potential of high-resolution infrared spectroscopy to probe organic chemistry,
gas temperatures and kinematics in the planet-forming zones close to a young
star.Comment: 4 pages, 4 figures; To appear in Astrophysical Journal Letter
Analysis of the dust evolution in the circumstellar disks of TTauri stars
We present a compositional analysis of 8-13um spectra of 32 young stellar
objects (YSOs). Our sample consists of 5 intermediate-mass stars and 27
low-mass stars. While the spectra and first scientific results have already
been published by Przygodda et al. (2003) and Kessler-Silacci et al. (2004) we
perform a more detailed analysis of the 10um silicate feature. In our analysis
we assume that this emission feature can be represented by a linear
superposition of the wavelength-dependent opacity
describing the optical properties of silicate grains with different chemical
composition, structure, and grain size. The determination of an adequate
fitting equation is another goal of this study. Using a restricted number of
fitting parameters we investigate which silicate species are necessary for the
compositional fitting. Particles with radii of 0.1um- and 1.5um consisting of
amorphous olivine and pyroxene, forsterite, enstatite, and quartz have been
considered. Only compact, homogeneous dust grains have been used in the
presented fitting procedures. In this context we show that acceptable fitting
results can also be achieved if emission properties of porous silicate grains
are considered instead. Although some previous studies give reasons for the
similarity between the dust in circumstellar disks of TTauri stars and Herbig
Ae/Be stars, a quantitative comparison has been missing, so far. Therefore, we
conclude with a discussion of the results of a 10um spectroscopic survey of van
Boekel et al. (2005) who focus on Herbig Ae/Be stars, the higher mass
counterparts of T Tauri stars and draw comparisons to this and other studies.
We find that the results of our study of T Tauri systems partly agree with
previous studies of Herbig Ae/Be stars.Comment: 17 pages, 6 figure
The radial distribution of dust species in young brown dwarf disks
We present a study of the radial distribution of dust species in young brown
dwarf disks. Our work is based on a compositional analysis of the 10 and 20
micron silicate emission features for brown dwarfs in the Taurus-Auriga
star-forming region. A fundamental finding of our work is that brown dwarfs
exhibit stronger signs of dust processing in the cold component of the disk,
compared to the higher mass T Tauri stars in Taurus. For nearly all of our
targets, we find a flat disk structure, which is consistent with the stronger
signs of dust processing observed in these disks. For the case of one brown
dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3
higher in the outer disk compared to the inner disk region. Simple large-scale
radial mixing cannot account for this gradient in the dust chemical
composition, and some local crystalline formation mechanism may be effective in
this disk. The relatively high abundance of crystalline silicates in the outer
cold regions of brown dwarf disks provides an interesting analogy to comets. In
this context, we have discussed the applicability of the various mechanisms
that have been proposed for comets on the formation and the outward transport
of high-temperature material. We also present Chandra X-ray observations for
two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825,
which has a ~12% crystalline mass fraction, to be more than an order of
magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline
mass fraction. Combining with previous X-ray data, we find the inner disk
crystalline mass fractions to be anti-correlated with the X-ray strength.Comment: Accepted in MNRA
- β¦