53 research outputs found

    Effects of gravitational darkening on the determination of fundamental parameters in fast rotating B-type stars

    Full text link
    In this paper we develop a calculation code to account for the effects carried by fast rotation on the observed spectra of early-type stars. Stars are assumed to be in rigid rotation and the grid of plane-parallel model atmospheres used to represent the gravitational darkening are calculated by means of a non-LTE approach. Attention is paid on the relation between the apparent and parent non-rotating counterpart stellar fundamental parameters and apparent and true vsini parameters as a function of the rotation rate Omega/Omega_c, stellar mass and inclination angle. It is shown that omission of gravitational darkening in the analysis of chemical abundances of CNO elements can produce systematic overestimation or underestimation, depending on the lines used, rotational rate and inclination angle. The proximity of Be stars to the critical rotation is re-discussed by correcting not only the vsini of 130 Be stars, but also their effective temperature and gravity to account for stellar rotationally induced geometrical distortion and for the concomitant gravitational darkening effect. We concluded that the increase of the vsini estimate is accompanied by an even higher value of the stellar equatorial critical velocity, so that the most probable average rate of angular velocity of Be stars attains Omega/Omega_c ~ 0.88.Comment: 20 pages, 16 figures. Submitted for publication in A&

    Optical spectroscopy of the large Kuiper Belt objects 136472 (2005 FY9) and 136108 (2003 EL61).

    Get PDF
    We present high signal precision optical reflectance spectra of the large Kuiper Belt objects 2005 FY9 and 2003 EL61. The spectrum of 2005 FY9 exhibits strong CH4 ice bands. A comparison between the spectrum and a Hapke model indicates that the CH4 bands are shifted 3.25 ± 2.25 Å relative to pure CH4 ice, suggesting the presence of another ice component on the surface of 2005 FY9, possibly N2 ice, CO ice, or Ar. The spectrum of 2003 EL61 is remarkably featureless. There is a hint of an O2 ice band at 5773 Å; however, this feature needs to be confirmed by future spectroscopic observations of 2003 EL61 with a higher continuum signal precision sufficient to detect a second, weaker O2 ice band at 6275 Å. [on SciFinder(R)

    Keck/HIRES Spectroscopy of Four Candidate Solar Twins

    Get PDF
    We use high S/N, high-resolution Keck/HIRES spectroscopy of 4 solar twin candidates (HIP 71813, 76114, 77718, 78399) from our Hipparcos-based CaII H & K survey to carry out parameter and abundance analyses of these objects. Our spectroscopic Teff estimates are some 100 K hotter than the photometric scale of the recent Geneva-Copenhagen survey; several lines of evidence suggest the photometric temperatures are too cool at solar TeffT_{\rm eff}. At the same time, our abundances for the 3 solar twin candidates included in the Geneva-Copenhagen survey are in outstanding agreement with the photometric metallicities; there is no sign of the anomalously low photometric metallicities derived for some late-G UMa group and Hyades dwarfs. A first radial velocity determination is made for HIP 78399, and UVW kinematics derived for all stars. HIP 71813 appears to be a kinematic member of the Wolf 630 moving group (a structure apparently reidentified in a recent analysis of late-type Hipparcos stars), but its metallicity is 0.1 dex higher than the most recent estimate of this group's metallicity. While certainly ``solar-type'' stars, HIP 76114 and 77718 are a few percent less massive, significantly older, and metal-poor compared to the Sun; they are neither good solar twin candidates nor solar analogs providing a look at the Sun at some other point in its evolution. HIP 71813 appears to be an excellent solar analog of age 8 Gyr. Our results for HIP 78399 suggest the promise of this star as a solar twin may be equivalent to the ``closest ever solar twin'' HR 6060; follow up study of this star is encouraged.Comment: Accepted for publication in The Astronomical Journal (November 2005 volume

    Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis

    Get PDF
    CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars whose rotation periods vary on timescales of decades. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. We found that the shapes of their phase curves were constant, while the periods were changing. Both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a timescale of several years. The rotation period of V901 Ori was increasing for the past quarter-century, reaching a maximum of 1.538771 d in the year 2003, when the rotation period began to decrease. A theoretically unexpected alternating variability of rotation periods in these stars would remove the spin-down time paradox and brings a new insight into structure and evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure

    Observations of Comet 9P/Tempel 1 with the Keck 1 HIRES Instrument During Deep Impact

    Get PDF
    We report high-spectral resolution observations of comet 9P/Tempel 1 before, during and after the impact on 4 July 2005 UT of the Deep Impact spacecraft with the comet. These observations were obtained with the HIRES instrument on Keck 1. We observed brightening of both the dust and gas, but at different rates. We report the behavior of OH, NH, CN, C3_{3}, CH, NH2_{2} and C2_{2} gas. From our observations, we determined a CN outflow velocity of at least 0.51 km sec1^{-1}. The dust color did not change substantially. To date, we see no new species in our spectra, nor do we see any evidence of prompt emission. From our observations, the interior material released by the impact looks the same as the material released from the surface by ambient cometary activity. However, further processing of the data may uncover subtle differences in the material that is released as well as the time evolution of this material.Comment: 22 pages, 5 figures (1 color, landscape). Accepted for publication in Icaru

    A Study of the B-V Colour Temperature Relation

    Full text link
    We attempt to construct a B-V colour temperature relation for stars in the least model dependent way employing the best modern data. The fit we obtained with the form Teff = Teff((B-V)0,[Fe/H],log g) is well constrained and a number of tests show the consistency of the procedures for the fit. Our relation covers from F0 to K5 stars with metallicity [Fe/H] = -1.5 to +0.3 for both dwarfs and giants. The residual of the fit is 66 K, which is consistent with what are expected from the quality of the present data. Metallicity and surface gravity effects are well separated from the colour dependence. Dwarfs and giants match well in a single family of fit, differing only in log g. The fit also detects the Galactic extinction correction for nearby stars with the amount E(B-V) = 0.26 +/-0.03 mag/kpc. Taking the newly obtained relation as a reference we examine a number of B-V colour temperature relations and atmosphere models available in the literature. We show the presence of a systematic error in the colour temperature relation from synthetic calculations of model atmospheres; the systematic error across K0 to K5 dwarfs is 0.04-0.05 mag in B-V, which means 0.25-0.3 mag in Mv for the K star range. We also argue for the error in the temperature scale used in currently popular stellar population synthesis models; synthetic colours from these models are somewhat too blue for aged elliptical galaxies. We derive the colour index of the sun (B-V)sun = 0.627 +/-0.018, and discuss that redder colours (e.g., 0.66-0.67) often quoted in the literature are incompatible with the colour-temperature relation.Comment: AASLaTeX (aaspp4.sty),36 pages (13 figures included), submitted to Astronomical Journal, replaced (typo in author name

    Chemical compositions of Four B-type Supergiants in the SMC Wing

    Full text link
    High-resolution UCLES/AAT spectra of four B-type supergiants in the SMC South East Wing have been analysed using non-LTE model atmosphere techniques to determine their atmospheric parameters and chemical compositions. The principle aim of this analysis was to determine whether the very low metal abundances (-1.1 dex compared with Galactic value) previously found in the Magellanic Inter Cloud region (ICR) were also present in SMC Wing. The chemical compositions of the four targets are similar to those found in other SMC objects and appear to be incompatible with those deduced previously for the ICR. Given the close proximity of the Wing to the ICR, this is difficult to understand and some possible explanations are briefly discussed.Comment: 11 pages, 2 figues, A&A accepte

    On the evolutionary status of Be stars. I. Field Be stars near the Sun

    Get PDF
    A sample of 97 galactic field Be stars were studied by taking into account the effects induced by the fast rotation on their fundamental parameters. All program stars were observed in the BCD spectrophotometric system in order to minimize the perturbations produced by the circumstellar environment on the spectral photospheric signatures. This is one of the first attempts at determining stellar masses and ages by simultaneously using model atmospheres and evolutionary tracks, both calculated for rotating objects. The stellar ages (τ\tau) normalized to the respective inferred time that each rotating star can spend in the main sequence phase (τ_MS\tau\_{\rm MS}) reveal a mass-dependent trend. This trend shows that: a) there are Be stars spread over the whole interval 0 \la \tau/\tau\_{\rm MS} \la 1 of the main sequence evolutionary phase; b) the distribution of points in the (τ/τ_MS,M/M_\tau/\tau\_{\rm MS},M/M\_{\odot}) diagram indicates that in massive stars (M \ga 12M\_{\odot}) the Be phenomenon is present at smaller τ/τ_MS\tau/\tau\_{\rm MS} age ratios than for less massive stars (M \la 12M\_{\odot}). This distribution can be due to: ii) higher mass-loss rates in massive objets, which can act to reduce the surface fast rotation; iiii) circulation time scales to transport angular momentum from the core to the surface, which are longer the lower the stellar mass.Comment: 18 pages, 6 figures, A&A, in pres

    The Discovery of a Planetary Companion to 16 Cygni B

    Get PDF
    High precision radial velocity observations of the solar-type star 16 Cygni B taken at McDonald Observatory and at Lick Observatory, have each independently discovered periodic radial-velocity variations indicating the presence of a Jovian-mass companion to this star. The orbital fit to the combined data gives a period of 800.8 days, a velocity amplitude of 43.9 m/s, and an eccentricity of 0.63. This is the largest eccentricity of any planetary system discovered so far. Assuming that 16 Cygni B has a mass of 1.0 Msun, this implies a mass for the companion of 1.5 sin i Jupiter masses. While the mass of this object is well within the range expected for planets, the large orbital eccentricity cannot be explained simply by the standard model of growth of planets in a protostellar disk. It is possible that this object was formed in the normal manner with a low eccentricity orbit, and has undergone post-formational orbital evolution, either through the same process which formed the ``massive eccentric'' planets around 70 Virginis and HD114762, or by gravitational interactions with the companion star 16 Cygni A. It is also possible that the object is an extremely low mass brown dwarf, formed through fragmentation of the collapsing protostar. We explore a possible connection between stellar photospheric Li depletion, pre-main sequence stellar rotation, the presence of a massive proto-planetary disk, and the formation of a planetary companion.Comment: 18 pages, 3 PostScript figures, Latex, uses aaspp4 macros, submitted to Astrophysical Journa
    corecore