513 research outputs found
Viewpoint consistency in Z and LOTOS: A case study
Specification by viewpoints is advocated as a suitable method of specifying complex systems. Each viewpoint describes the envisaged system from a particular perspective, using concepts and specification languages best suited for that perspective. Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints and to show that the different viewpoints do not impose contradictory requirements. In previous work we have described a range of techniques for consistency checking, refinement, and translation between viewpoint specifications, in particular for the languages LOTOS and Z. These two languages are advocated in a particular viewpoint model, viz. that of the Open Distributed Processing (ODP) reference model. In this paper we present a case study which demonstrates how all these techniques can be combined in order to show consistency between a viewpoint specified in LOTOS and one specified in Z. Keywords: Viewpoints; Consistency; Z; LOTOS; ODP
No Humanitarian Intervention in Asian Genocides: How Possible and Legitimate?
This paper addresses an important empirical puzzle: why has the United States, without exception, chosen not to intervene in the six humanitarian catastrophes in post-war Asia, namely in Indonesia, East Pakistan/Bangladesh, Cambodia, East Timor, Sri Lanka and Myanmar? We use an eclectic approach that blends arguments about the international normative structure and geostrategic interests to examine what has made the absence of humanitarian intervention in Asia by the US possible and legitimate. Specifically, we focus on the paradox between calls for humanitarian intervention and the historically and geographically contingent social construction of the norms of humanity, national sovereignty and UN-backed multilateralism in conjunction with US and Chinese concerns over their regional geostrategic interests. The normative narratives about race, âcommunistsâ, âterroristsâ, international order and inclusive multilateral process, and geostrategic interests of the US and China combine to make non-intervention possible and legitimate
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Study of boson production in association with beauty and charm
The associated production of a boson with a jet originating from either a
light parton or heavy-flavor quark is studied in the forward region using
proton-proton collisions. The analysis uses data corresponding to integrated
luminosities of 1.0 and collected with the LHCb detector
at center-of-mass energies of 7 and 8 TeV, respectively. The bosons are
reconstructed using the decay and muons with a transverse
momentum, , larger than 20 GeV in the pseudorapidity range
GeV
and . The sum of the muon and jet momenta must satisfy
GeV. The fraction of jet events that originate from beauty
and charm quarks is measured, along with the charge asymmetries of the
and production cross-sections. The ratio of the jet to
jet production cross-sections is also measured using the
decay. All results are in agreement with Standard Model predictions
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
Constraints on the unitarity triangle angle from Dalitz plot analysis of decays
The first study is presented of CP violation with an amplitude analysis of
the Dalitz plot of decays, with , and . The analysis is based on a data sample corresponding to
of collisions collected with the LHCb detector. No
significant CP violation effect is seen, and constraints are placed on the
angle of the unitarity triangle formed from elements of the
Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated
with the decay are determined for the first time. These
measurements can be used to improve the sensitivity to of existing and
future studies of the decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html;
updated to correct figure 9 (numerical results unchanged
Search for the rare decays and
A search for the rare decay of a or meson into the final
state is performed, using data collected by the LHCb experiment
in collisions at and TeV, corresponding to an integrated
luminosity of 3 fb. The observed number of signal candidates is
consistent with a background-only hypothesis. Branching fraction values larger
than for the decay mode are
excluded at 90% confidence level. For the decay
mode, branching fraction values larger than are excluded at
90% confidence level, this is the first branching fraction limit for this
decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm
Search for hidden-sector bosons in decays
A search is presented for hidden-sector bosons, , produced in the decay
, with and
. The search is performed using -collision data
corresponding to 3.0 fb collected with the LHCb detector. No significant
signal is observed in the accessible mass range
MeV, and upper limits are placed on the branching fraction product
as
a function of the mass and lifetime of the boson. These limits are of
the order of for lifetimes less than 100 ps over most of the
range, and place the most stringent constraints to date on many
theories that predict the existence of additional low-mass bosons.Comment: All figures and tables, along with supplementary material, are
available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-036.htm
- âŠ