230 research outputs found
Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase
ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures
ArachnoServer (www.arachnoserver.org) is a manually curated database providing information on the sequence, structure and biological activity of protein toxins from spider venoms. These proteins are of interest to a wide range of biologists due to their diverse applications in medicine, neuroscience, pharmacology, drug discovery and agriculture. ArachnoServer currently manages 1078 protein sequences, 759 nucleic acid sequences and 56 protein structures. Key features of ArachnoServer include a molecular target ontology designed specifically for venom toxins, current and historic taxonomic information and a powerful advanced search interface. The following significant improvements have been implemented in version 2.0: (i) the average and monoisotopic molecular masses of both the reduced and oxidized form of each mature toxin are provided; (ii) the advanced search feature now enables searches on the basis of toxin mass, external database accession numbers and publication date in ArachnoServer; (iii) toxins can now be browsed on the basis of their phyletic specificity; (iv) rapid BLAST searches based on the mature toxin sequence can be performed directly from the toxin card; (v) private silos can be requested from research groups engaged in venoms-based research, enabling them to easily manage and securely store data during the process of toxin discovery; and (vi) a detailed user manual is now available
Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli
The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L
Membrane Potential-Dependent Inactivation of Voltage-Gated Ion Channels in α-Cells Inhibits Glucagon Secretion From Human Islets
OBJECTIVE: To document the properties of the voltage-gated ion channels in human pancreatic alpha-cells and their role in glucagon release. RESEARCH DESIGN AND METHODS: Glucagon release was measured from intact islets. [Ca(2+)](i) was recorded in cells showing spontaneous activity at 1 mmol/l glucose. Membrane currents and potential were measured by whole-cell patch-clamping in isolated alpha-cells identified by immunocytochemistry. RESULT: Glucose inhibited glucagon secretion from human islets; maximal inhibition was observed at 6 mmol/l glucose. Glucagon secretion at 1 mmol/l glucose was inhibited by insulin but not by ZnCl(2). Glucose remained inhibitory in the presence of ZnCl(2) and after blockade of type-2 somatostatin receptors. Human alpha-cells are electrically active at 1 mmol/l glucose. Inhibition of K(ATP)-channels with tolbutamide depolarized alpha-cells by 10 mV and reduced the action potential amplitude. Human alpha-cells contain heteropodatoxin-sensitive A-type K(+)-channels, stromatoxin-sensitive delayed rectifying K(+)-channels, tetrodotoxin-sensitive Na(+)-currents, and low-threshold T-type, isradipine-sensitive L-type, and omega-agatoxin-sensitive P/Q-type Ca(2+)-channels. Glucagon secretion at 1 mmol/l glucose was inhibited by 40-70% by tetrodotoxin, heteropodatoxin-2, stromatoxin, omega-agatoxin, and isradipine. The [Ca(2+)](i) oscillations depend principally on Ca(2+)-influx via L-type Ca(2+)-channels. Capacitance measurements revealed a rapid (<50 ms) component of exocytosis. Exocytosis was negligible at voltages below -20 mV and peaked at 0 mV. Blocking P/Q-type Ca(2+)-currents abolished depolarization-evoked exocytosis. CONCLUSIONS: Human alpha-cells are electrically excitable, and blockade of any ion channel involved in action potential depolarization or repolarization results in inhibition of glucagon secretion. We propose that voltage-dependent inactivation of these channels underlies the inhibition of glucagon secretion by tolbutamide and glucose
Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas
BACKGROUND: Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. PRINCIPAL FINDINGS: Here we report the presence of a new superfamily of ktts in spiders (TARANTULAS: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (omega) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications. CONCLUSIONS/SIGNIFICANCE: These finding illustrate that the two activity sites of Kunitz-type toxins are functionally and evolutionally independent and provide new insights into effects of Darwinian selection pressures on KTT evolution, and mechanisms by which new functions can be grafted onto old protein scaffolds
Spider-Venom Peptides as Bioinsecticides
Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world’s annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides
Crystal Structures of Cif from Bacterial Pathogens Photorhabdus luminescens and Burkholderia pseudomallei
A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif) family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a γ-proteobacterium) and human pathogen Burkholderia pseudomallei (a β-proteobacterium) are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC), despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the ‘tail-domain’ (absent in the EPEC Cif structure), suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins
High-Density Expression of Ca2+-Permeable ASIC1a Channels in NG2 Glia of Rat Hippocampus
NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs) are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia
Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins
Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed
Interrogating and Predicting Tolerated Sequence Diversity in Protein Folds: Application to E. elaterium Trypsin Inhibitor-II Cystine-Knot Miniprotein
Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a thorough exploration into the tolerated loop lengths and sequence space of a knottin scaffold has not been performed. In this work, we used the Ecballium elaterium trypsin inhibitor II (EETI) as a model member of the knottin family and constructed libraries of EETI loop-substituted variants with diversity in both amino acid sequence and loop length. Using yeast surface display, we isolated properly folded EETI loop-substituted clones and applied sequence analysis tools to assess the tolerated diversity of both amino acid sequence and loop length. In addition, we used covariance analysis to study the relationships between individual positions in the substituted loops, based on the expectation that correlated amino acid substitutions will occur between interacting residue pairs. We then used the results of our sequence and covariance analyses to successfully predict loop sequences that facilitated proper folding of the knottin when substituted into EETI loop 3. The sequence trends we observed in properly folded EETI loop-substituted clones will be useful for guiding future protein engineering efforts with this knottin scaffold. Furthermore, our findings demonstrate that the combination of directed evolution with sequence and covariance analyses can be a powerful tool for rational protein engineering
- …