3,979 research outputs found
The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism
Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony âfishesâ, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant rayâfinned fish species and optimised the results on recent largeâscale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately twoâthirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some nonâeuteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. redâmuscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology
Mesoscale dynamics on the Sun's surface from HINODE observations
Aims: The interactions of velocity scales on the Sun's surface, from
granulation to supergranulation are still not understood, nor are their
interaction with magnetic fields. We thus aim at giving a better description of
dynamics in the mesoscale range which lies between the two scales mentioned
above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun
photosphere at the disk center obtained with the Solar Optical Telescope
onboard Hinode. The observations, which have a field of view of 100
\arcsec 100 \arcsec, typically contain four supergranules. We monitor
in detail the motion and evolution of granules as well as those of the radial
magnetic field. Results: This analysis allows us to better characterize Trees
of Fragmenting Granules issued from repeated fragmentation of granules,
especially their lifetime statistics. Using floating corks advected by measured
velocity fields, we show their crucial role in the advection of the magnetic
field and in the build up of the network. Finally, thanks to the long duration
of the time series, we estimate that the turbulent diffusion coefficient
induced by horizontal motion is approximately . Conclusions: These results demonstrate that the long living
families contribute to the formation of the magnetic network and suggest that
supergranulation could be an emergent length scale building up as small
magnetic elements are advected and concentrated by TFG flows. Our estimate for
the magnetic diffusion associated with this horizontal motion might provide a
useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full
resolution version available @
http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd
The SPHERE data center: a reference for high contrast imaging processing
The objective of the SPHERE Data Center is to optimize the scientific return
of SPHERE at the VLT, by providing optimized reduction procedures, services to
users and publicly available reduced data. This paper describes our motivation,
the implementation of the service (partners, infrastructure and developments),
services, description of the on-line data, and future developments. The SPHERE
Data Center is operational and has already provided reduced data with a good
reactivity to many observers. The first public reduced data have been made
available in 2017. The SPHERE Data Center is gathering a strong expertise on
SPHERE data and is in a very good position to propose new reduced data in the
future, as well as improved reduction procedures.Comment: SF2A proceeding
Dynamic reconfiguration of human brain networks during learning
Human learning is a complex phenomenon requiring flexibility to adapt
existing brain function and precision in selecting new neurophysiological
activities to drive desired behavior. These two attributes -- flexibility and
selection -- must operate over multiple temporal scales as performance of a
skill changes from being slow and challenging to being fast and automatic. Such
selective adaptability is naturally provided by modular structure, which plays
a critical role in evolution, development, and optimal network function. Using
functional connectivity measurements of brain activity acquired from initial
training through mastery of a simple motor skill, we explore the role of
modularity in human learning by identifying dynamic changes of modular
organization spanning multiple temporal scales. Our results indicate that
flexibility, which we measure by the allegiance of nodes to modules, in one
experimental session predicts the relative amount of learning in a future
session. We also develop a general statistical framework for the identification
of modular architectures in evolving systems, which is broadly applicable to
disciplines where network adaptability is crucial to the understanding of
system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4
figures, 3 table
Impact of the European Clinical Trials Directive on prospective academic clinical trials associated with BMT
The European Clinical Trials Directive (EU 2001; 2001/20/EC) was introduced to improve the efficiency of commercial and academic clinical trials. Concerns have been raised by interested organizations and institutions regarding the potential for negative impact of the Directive on non-commercial European clinical research. Interested researchers within the European Group for Blood and Marrow Transplantation (EBMT) were surveyed to determine whether researcher experiences confirmed this view. Following a pilot study, an internet-based questionnaire was distributed to individuals in key research positions in the European haemopoietic SCT community. Seventy-one usable questionnaires were returned from participants in different EU member states. The results indicate that the perceived impact of the European Clinical Trials Directive has been negative, at least in the research areas of interest to the EBMT
Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks
The retrieval behavior and thermodynamic properties of symmetrically diluted
Q-Ising neural networks are derived and studied in replica-symmetric mean-field
theory generalizing earlier works on either the fully connected or the
symmetrical extremely diluted network. Capacity-gain parameter phase diagrams
are obtained for the Q=3, Q=4 and state networks with uniformly
distributed patterns of low activity in order to search for the effects of a
gradual dilution of the synapses. It is shown that enlarged regions of
continuous changeover into a region of optimal performance are obtained for
finite stochastic noise and small but finite connectivity. The de
Almeida-Thouless lines of stability are obtained for arbitrary connectivity,
and the resulting phase diagrams are used to draw conclusions on the behavior
of symmetrically diluted networks with other pattern distributions of either
high or low activity.Comment: 21 pages, revte
Energy Conservation Constraints on Multiplicity Correlations in QCD Jets
We compute analytically the effects of energy conservation on the
self-similar structure of parton correlations in QCD jets. The calculations are
performed both in the constant and running coupling cases. It is shown that the
corrections are phenomenologically sizeable. On a theoretical ground, energy
conservation constraints preserve the scaling properties of correlations in QCD
jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on
ftp://www.inln.unice.fr
Predicting convective blueshift and radial-velocity dispersion due to granulation for FGK stars
To detect Earth-mass planets using the Doppler method, a major obstacle is to
differentiate the planetary signal from intrinsic stellar variability (e.g.,
pulsations, granulation, spots and plages). Convective blueshift, which results
from small-scale convection at the surface of Sun-like stars, is relevant for
Earth-twin detections as it exhibits Doppler noise on the order of 1 m/s. Here,
we present a simple model for convective blueshift based on fundamental
equations of stellar structure. Our model successfully matches observations of
convective blueshift for FGK stars. Based on our model, we also compute the
intrinsic noise floor for stellar granulation in the radial velocity
observations. We find that for a given mass range, stars with higher
metallicities display lower radial-velocity dispersion due to granulation, in
agreement with MHD simulations. We also provide a set of formulae to predict
the amplitude of radial-velocity dispersion due to granulation as a function of
stellar parameters. Our work is vital in identifying the most amenable stellar
targets for EPRV surveys and radial velocity follow-up programmes for TESS,
CHEOPS, and the upcoming PLATO mission.Comment: 11 pages, 5 figures, 3 tables. Submitted, under revie
Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer
We report on the direct observation of the transmission phase shift through a
Kondo correlated quantum dot by employing a new type of two-path
interferometer. We observed a clear -phase shift, which persists up to
the Kondo temperature . Above this temperature, the phase shifts by
more than at each Coulomb peak, approaching the behavior observed for
the standard Coulomb blockade regime. These observations are in remarkable
agreement with 2-level numerical renormalization group calculations. The unique
combination of experimental and theoretical results presented here fully
elucidates the phase evolution in the Kondo regime.Comment: 4 pages, 3 figure
- âŠ