544 research outputs found
A Cenozoic-style scenario for the end-Ordovician glaciation
The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers
Distribution of the M2-1, P, N, SH, F M and G proteins in the infected cell clusters. (A) HEp2 cell monolayers were infected with RSV using an multiplicity of infection of 0.0002 and at 2Â days post-infection (dpi) the cells were fixed and stained using either anti-M2-1, anti-P, anti-N, anti-SH, anti-F, anti-M or anti-G and stained cells were then viewed using fluorescence microscopy (objective x20). (B) An infected cells cluster examined at higher magnification (objective x40 magnification) or (objective x100 magnification). The infected cell clusters (long white arrows)Â are indicated. Inset, an enlarged imaged where virus filaments (short white arrows) are highlighted. (TIF 1152Â kb
Water Walls for Life Support
A method and associated system for processing waste gases, liquids and solids, produced by human activity, to separate (i) liquids suitable for processing to produce potable water, (ii) solids and liquids suitable for construction of walls suitable for enclosing a habitat volume and for radiation shielding, and (iii) other fluids and solids that are not suitable for processing. A forward osmosis process and a reverse osmosis process are sequentially combined to reduce fouling and to permit accumulation of different processable substances. The invention may be used for long term life support of human activity
The High Voltage Feedthroughs for the ATLAS Liquid Argon Calorimeters
The purpose, design specifications, construction techniques, and testing
methods are described for the high voltage feedthrough ports and filters of the
ATLAS Liquid Argon calorimeters. These feedthroughs carry about 5000 high
voltage wires from a room-temperature environment (300 K) through the cryostat
walls to the calorimeters cells (89 K) while maintaining the electrical and
cryogenic integrity of the system. The feedthrough wiring and filters operate
at a maximum high voltage of 2.5 kV without danger of degradation by corona
discharges or radiation at the Large Hadron Collider
Collateral and Debt Maturity Choice. A Signaling Model
This paper derives optimal loan policies under asymmetric information where banks offer loan contracts of long and short duration, backed or unbacked with collateral. The main novelty of the paper is that it analyzes a setting in which high quality firms use collateral as a complementary device along with debt maturity to signal their superiority. The least-cost signaling equilibrium depends on the relative costs of the signaling devices, the difference in firm quality and the proportion of good firms in the market. Model simulations suggest a non-monotonic relationship between firm quality and debt maturity, in which high quality firms have both long-term secured debt and short-term secured or non-secured debt.
Identification of possible virulence marker from Campylobacter jejuni isolates
This is the final version of the article. Available from the publisher via the DOI in this record.A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.The work was partly supported by the UK Biotechnology and
Biological Sciences Research Council, award BB/1024631/1 to R.T.,
D.S., and O.C.; by a Wellcome Trust Institutional Strategic Support
Award (WT097835MF); and by a studentship awarded to J.H.
Mr Harrison is a PhD student at the University of Exeter
under the supervision of D.S. His research focuses on using bioinformatic
methods to investigate the comparative genomics of
emerging diseases and plant-associated microbes
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
- …
