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A Cenozoic-style scenario for the end-Ordovician
glaciation
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The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive
glaciation potentially at elevated CO, levels, biogeochemical cycle disruptions recorded as
large isotope anomalies and a devastating extinction event. lce-sheet volumes claimed to be
twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as
today. Here we argue that some of these remarkable claims arise from undersampling of
incomplete geological sections that led to apparent temporal correlations within the relatively
coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally
complete sedimentary records from two, low and high, palaeolatitude settings. Their
correlation framework reveals a Cenozoic-style scenario including three main glacial cycles
and higher-order phenomena. This necessitates revision of mechanisms for the end-
Ordovician events, as the first extinction is tied to an early phase of melting, not to initial
cooling, and the largest 8'3C excursion occurs during final deglaciation, not at the glacial apex.
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helf sedimentary architecture is controlled essentially b}l

relative rates of base-level change and sediment supply!?.

The base level reflects the interplay between tectonics
(subsidence, volume change at mid-oceanic ridges) and the
orbitally tuned, glacio-eustatically driven, sea-level change. The
rate of the latter, at tens of metres per 10*-10° years, is one to
three orders of magnitude greater than the tectonically driven
sea-level change, at tens of metres per million years or less. The
critical issue for analysing the stratigraphic record, therefore, is
the correct assignment of depositional units to their appropriate
temporal hierarchy alongside a given sea-level curve. Another
consideration is the temporal significance of the observed or
suspected hiatuses. Any stratigraphic record of ancient shelf
deposits, and their isotopic or palaeontological proxies, inevitably
samples only the discontinuous segments of a given sea-level
curve’, which often are below the relatively coarse resolution
correlation potential of Palaeozoic biostratigraphy?®. Regardless,
shelf deposits are the principal record that we have for pre-
Mesozoic glaciations and they must therefore serve as
stratigraphic archives for glacially driven events, providing:
subsidence was active; water depths at the onset of glaciation
were moderately deep; and sediment supply was adjusted to
subsidence rates. These preconditions are essential for the
maintenance of significant water depths during glaciation, as
any rapid shallowing would pre-empt the registration of
subsequent glacio-eustatic events.

The end-Ordovician witnessed one of the three largest
Phanerozoic glaciations with the development of continental-
scale ice sheets”’. This climatic event was postulated to have
been initiated by massive weathering of fresh volcanic rocks®,
tectonics and related Plate motions’ 1!, high cosmic ray flux
impacting cloud albedo'? or by a combination of the above!3. The
glaciation apparently coincided with highly!# or moderately!®1>
elevated CO, levels, with large isotopic excursions (C, S, O, N,
Nd), and with a major double-phased biological extinction!6-22,
Interpretations based on far-field, low palaeolatitude sequences,
resulted in ‘coup-de-théitre’ scenarios that have tied the two
phases of extinction to the onset and termination of a single
glaciation'®17:21, Yet the high palaeolatitude near-field sequences
contain up to five glacial cycles that can be tentatively correlated
across the Gondwanan glaciated platforms>?3. The low
palaeolatitude archives must therefore represent a more
complex scenario!®2%24-26 than that of a single, major glacial
event. If so, a multiorder climate signal with a hierarchy of cycles,
a Cenozoic-type ‘business as usual’ scenario, is a more likely
alternative than a large singular event. Such linkage of eustatic,
biological and isotopic records to the climatically forced
development of an ice sheet can only be contemplated within a
framework of high-resolution sequence stratigraphy that
integrates allo-, chemo- or biostratigraphic markers.

Here, we present such a framework, based on the recognition
of genetic stratigraphic sequences (GSSs) and intervening erosion
surfaces (see Methods). This framework, driven by glacio-eustatic
cycles tied to the evolution of polar continental-scale ice sheets
over west Gondwana®, enables the correlation of eustatic cycles at
a level that is beyond the resolution capability of most absolute
dating methods and of biozones, the latter typically of Myr
duration*. A Cenozoic-style scenario including three main glacial
cycles and higher-order phenomena necessitates the revision of
the end-Ordovician, glaciation-related sequence of events.

Results

Palaeolatitude sequence stratigraphic frameworks. We intro-
duce sequence stratigraphic correlation frameworks for two
superbly exposed and exceptionally well-developed latest
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Ordovician  successions  (Fig. 1), the Anti-Atlas of
Morocco”?”?8 and Anticosti Island in Canada®>?. Both offer
sections, on a 100-km scale, from the basin edge to the axis of
active sedimentary depocentres (Fig. 2 and Supplementary Figs 1
and 2). Relative to the end-Ordovician ice-sheet centre (present-
day north-central Africa), they provide a near-field (Anti-Atlas,
siliciclastic platform) and a far-field (Anticosti Island, mixed
carbonate and siliciclastic) stratigraphic record. These two
successions, up to 300 and 100m thick, respectively, were
deposited in basins with notable subsidence rates and significant
(ca. 100 m) initial Katian water depths, enabling the development
of comprehensive archives of the latest Ordovician glaciation
(Supplementary Fig. 3). On the basis of average shelf-depositional
rates within the overall Late Ordovician context”?’, and on
comparison with analogous late Cenozoic shelf stratigraphies>*’,
such thick successions are considered to be long-term
>>100skyr archives. In both areas, the end-Ordovician
comprises three genetic low-order stratigraphic sequences
(GSSs) of highest significance that, in turn, encompass a
number of higher-order GSSs of intermediate and low
significance (Fig. 2; see the Methods).

The intercontinental correlation of these two successions is
made possible due to the recognition of marker intervals. Earlier
palaeontological studies already bracketed the stratigraphic
interval that contains the well-known end-Ordovician extinction
events (Supplementary Figs 1 and 2). In both sections, the first
extinction event is situated around the conventional Katian—
Hirnantian boundary, which in our record is penecontempora-
neous with the major bounding surface that separates the two
lower low-order GSSs. The related ‘maximum flooding interval'—
rather than the maximum flooding surfaces (MFS) that cannot be
strictly synchronous at the global scale—is our first marker.
It correlates with the brief ‘pre-Hirnantian deepening’ event
identified in western Laurentia?2. The second marker based on
allostratigraphy relies on the signature of the end-Ordovician
glacial climax. In the Anti-Atlas, it demonstrably correlates with
the stratigraphic interval bounded by glacial erosion surfaces and
includes widespread glacial (subglacial, glaciomarine...) deposits
in the basinal succession (the glacial interval in Fig. 2). Note that
coeval strata are often absent in basin edge successions (Hajguig
Wadi log in Fig. 2). In the Anticosti Island succession, the
signature of the glacial climax (lowest sea levels) is ascribed to the
prominent erosional unconformity at the base of the Laframboise
Mb. The result is a severe erosional truncation of the studied
interval (Fig. 2 and Supplementary Fig. 2). Regional correlation of
low- and high-order GSSs between these two markers is indeed
intriguing (Fig. 2). Moreover, other subordinate erosional
unconformities at the basin edge of the Anti-Atlas succession
have their counterparts in the Anticosti Island succession. For the
highest-order GSSs, at least partially related to local processes,
such correlations are less reliable.

The end-Ordovician glacial tempos. Within the context of
glaciation, where eustasy is expected to control shallow shelf
sequences®, our findings strongly suggest that the two
independent regional scale frameworks and their correlation are
robust and that the correspondence of the low- and high-order
GSS records from dissimilar tectonic and environmental settings
arises from glacio-eustatically fluctuating sea levels, the latter a
consequence of waxing and waning of the western Gondwana ice
sheet. We interpret the three low-order GSSs to be the signature
of the three extensive glacial cycles (Latest Ordovician Glacial
Cycles, LOGCs 1-3; Figs 2 and 3 and Supplementary Note). Note
that our provisional numbering refers to the latest Ordovician,
understood to informally include the highest Katian and the
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Figure 1| Geological settings. (a) Position of the two study areas on a palacogeographic reconstruction (modified from Achab and Paris®®). In the Late
Ordovician, the Anti-Atlas succession was part of the North Gondwana shelf, an epicratonic domain at high palaeolatitudes (green star). It included an actively
subsiding depositional trough, which was free of ice until the middle Hirnantian, but glaciated during the glacial maximum in the upper Hirnantian. In contrast,
the Anticosti Island succession accumulated in a foreland basin that developed at low palaeolatitudes during closure of the lapetus Ocean at the onset of the
Taconic orogeny (orange star). (b) On Anticosti Island, cliffs and marine platforms provide a superbly exposed latest Ordovician to early Silurian mixed
siliciclastic-carbonate shelf succession. At Pointe Laframboise, alternating limestone (inner ramp) and softer shale (outer ramp) intervals across the shoreline
platform clearly reflect the sequence stratigraphic correlation scheme inferred from sedimentary facies analysis. (¢) Extensive outcrops of the Anti-Atlas
Palaeozoic succession offer a superb record of predominantly shallow-marine Cambrian to Carboniferous sequences?”:%%, Near Tazzarine, a thick (up to 350 m)
succession of alternating sandstones (storm- to tide-dominated, subordinate glaciation-related deposits) and offshore shales allows a compelling sequence
stratigraphic correlation framework to be established for the latest Katian and Hirnantian (see Fig. 2). Coloured triangles represent the three identified Late
Ordovician Glacial Cycles (LOGC1-3) that comprise a lower, orange/yellow triangle (regressive system tracts, RSTs) and an upper, purple triangle (transgressive
system tracts, TSTs). LOGC are bounded by dotted lines, underlining MFS. Other surfaces: dashed lines, sharp-based surfaces and their correlatives within RSTs;

solid lines, maximum regressive surfaces; wavy lines, subaerial erosion (Anticosti) or basal glacial erosion surface (Anti-Atlas).

Hirnantian. This is in agreement with the views that ice sheets
were extant already before the latest Katian”?>31:32, Qur first
glacial cycle spans the upper Katian (LOGC 1), the second
(LOGC 2) includes the uppermost Katian strata and most of the
lower to middle part of Hirnantian and the third (LOGC 3)
commences in the upper Hirnantian and ends in the lowermost
Silurian. In our view, corroborated recently by Nd isotope
studies??, the end-Ordovician glaciation could not have been
restricted to a single short-lived glacial event, as earlier believed.

The minimum depositional time for the entire LOGC 1-3
succession is in excess of the Hirnantian duration (~1.4%0.2
Myr33), the latter encompassing about 60-90% of the LOGC 2
and some 40-80% of the LOGC 3. Assuming that all LOGCs
are of about equal durations, a single LOGC corresponds to a
0.7-1.6 Myr time span. The embedded higher-frequency
multiorder event stratigraphy is typical of orbitally controlled
climatic oscillations that lead to recurring ice-sheet growth
stages®®, in agreement with the modelling results of Hermann
et al.® Note however that in contrast to the well-known, strongly
asymmetric and shorter-term, Pleistocene glacial cycles®®, our
LOGCs show no abrupt deglaciations. They have a symmetric
distribution of the high-order GSSs, as evident from the stacking
patterns within the low-order regressive to transgressive system
tracts (TSTs). Long-lasting interglacials are expressed as
condensed, maximum flooding stratigraphic intervals’ that
account for significant portions of the overall duration of the
studied time span (Fig. 3). Despite of some similarities to

Quaternary glaciations>”"1>31:37 the durations and internal

organization of LOGCs argue for dissimilar glacial tempos and
forcings. These Ordovician features and tempos more closely
resemble the Oligocene climate patterns that were driven by a
high-amplitude obliquity modulation at 1.2Myr frequency>,
resulting in a limited number of short-lived ice-sheet growth
phases, our high-order GSSs, centred around the obliquity
nodes®®3°. Such high-frequency signals may hold some
similarities to the metre-scale cycles described from other low-
latitude areas and attributed to =200 (ref. 40) or 40-130kyr
(ref. 32) frequency oscillations.

Assuming the analogy with the Oligocene climate is valid, we
hypothesize that an orbital forcing responding to the amplitude
modulation of the obliquity typifies glacial climate systems at
relatively high CO,,.y, levels. In such a scenario, the ice-sheet
inception, driven by ice-albedo feedbacks, may have resulted from
a dearth of exceptionally warm rather than a ubiquity of
exceptionally cool summers3®,

Discussion

Our sequence stratigraphic framework allows Hirnantian excur-
sion(s) and extinction(s) to be revisited. The large positive carbon
isotope excursions of the Palaeozoic, such as the Hirnantian
Isotopic Carbon Excursion, HICE in LOGC 3 (refs 17,18,41-43),
are often used as chronostratigraphic markers, albeit with no
consensus model for their existence. Yet, the notion that the
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Figure 2 | Sequence stratigraphic correlation frameworks in the Anti-Atlas and Anticosti Island successions. The two frameworks were established
separately and later correlated (note the different vertical scales: 50 m and 100 unit bars for the Anti-Atlas and Anticosti Island successions, respectively).
Both show three superposed low-order GSSs that comprise alternating RST and TSTs symbolized by coloured, orange/yellow and purple triangles,
respectively. These low-order GSSs include higher-order GSSs (high- and highest-order GSSs) of intermediate and low significance, symbolized by smaller
triangles (white and grey triangles, respectively). Apparent intercontinental correlation of the two sequence stratigraphic frameworks for

low- and high-order ranks confidently supports the proposition that the low-order GSSs are signatures of three successive LOGCs, which together
encompass a 2-4 Myr latest Katian to lowermost Silurian time interval. Because the high- and highest-order GSSs relate to the relative rates of
base-level changes (Supplementary Fig. 3), rather than to a priori assumptions about sequence duration, no temporal significance can be attributed at this
stage. We retain here lithostratigraphic names because the related boundaries crosscut timelines, for example, the Katian/Hirnantian boundary (see
Supplementary Figs 1 and 2). Lf: Laframboise Member. Black arrows point to stratigraphic interval with significant faunal turnovers. Encircled numbers 1-6
refer to the numbering of glacial erosion surfaces (see Supplementary Fig. 1).

SBCam, signal of shelf carbonates is a direct reflection of the
313Cpy of the globally uniform open ocean is clearly open to
debate!>26 (Supplementar?f Discussion). Note that the magnitude
and occurrences of such '3C enrichments depends on localized
settings (for example, epeiric versus open ocean aquafacie522’44)
and is therefore related to depositional facies and not
straightforwardly to a global signal. For example, the 8'3C .
on the modern Bahamas Bank is considerably more positive than
that of the open ocean®’.

In addition, our revised chronology questions the paradigm
of temporal relationships that link the position of the end-
Ordovician glacial cycles, their tempos and biochemical
events'>16-2226 The first issue that arises is the identification
and temporal range of the HICE itself. If it is understood as
coeval with the large 4 4%o isotopic excursion, it has to be
confined to a restricted time interval of a single high-order GSS
within the end-Ordovician glaciation (Fig. 3), as posited by the
Anticosti case study. If, on the other hand, understood as a !3C
signal that commences in the latest Katian and ends in the latest
Hirnantian, our results (Fig. 3 and Supplementary Table 1) show

13C enrichments in at least three stratigraphic positions, suggesting
that HICE combines several excursions, thus challenging its validity
as a high-resolution chronostratigraphic marker.

The Anticosti 8'3C,;, curve (Fig. 3) includes two main
isotopic events. First, it is the well-known excursion in the
Laframboise Mb. (4 4%o) that is disconnected from a rising limb
in the underlying strata by a major unconformity that we relate to
the glacial maximum and to subaerial erosion in LOGC 3.
Second, there is an earlier asymmetric excursion ( + 2%o) with its
descending limb that is spanning the lower and middle parts of
the Ellis Bay Fm. (LOG 2). There is also a lesser enrichment in the
uppermost Vauréal Fm., associated with LOGC 1, which may
form a third, subordinate excursion. Other putative (< 1%o)
excursions, while present, are minor and difficult to interpret.
This multi-peak isotope pattern at Anticosti Island questions the
views of strictly synchronous signals, despite observations that a
number of Hirnantian records worldwide—and potentially
similar ‘wiggles’ in the carbon isotope record elsewhere—
contain positive 5!3C spikes that appear isochronous!'’-2446
within the correlation capabilities of the Palaeozoic bio- and/or
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Figure 3 | Perspective of sequence stratigraphy. Temporal correspondence between documented (chitinozoa®4>55260) or essentially inferred
(graptolite) biostratigraphies and (a), the Anticosti Island succession with its related isotopic signal and faunal turnovers and (b), the Anti-Atlas succession
with interpreted low-frequency sea-level changes and ice-sheet occurrences. A cycle hierarchy is developed that distinguishes LOGC1-3

(low-order, high-significance Late Ordovician Glacial Cycles represented by both coloured triangles and the thick, pale blue curve) from high-order cycles
(thin, dark blue curve). LOGCs are bounded by major MFS (dotted lines). Blue shading highlights time intervals specifically characterized, or thought to be
characterized by ice-sheet development stages. The ice-sheet development increased from the late Katian to the late Hirnantian, as suggested by
glacioeustatic trends. The dashed blue curve is a representation of the early Silurian eustatic background. Black, dashed lines are the inferred Katian to
Hirnantian and Hirnantian to Llandovery boundaries. (¢) Representation of a potential time calibration is based on astronomical forcings dominated by
1.2 Myr amplitude modulation of obliquity cycles3* (see text for details). By analogy with the Cenozoic, the composite artificial curve was constructed by
mixing high-frequency orbital cycles (ETP' for eccentricity-tilt-climatic precession33) and here it is shown only to illustrate the distortion in the
stratigraphic record. It results in condensed transgressive and overdeveloped lowstand intervals, relative to a linear timescale. The high- and highest-order
glacial cycles likely correspond to such orbitally forced, high-frequency climatic oscillations. In contrast, during the long interglacials orbital forcing did not
result in ice-sheet development and they have therefore a poorly differentiated record. The end-Ordovician includes short glaciation intervals with
cumulative duration of perhaps a few hundred thousand years. The embedded isotopic and biological signals show up to three discrete isotopic events and
two faunal turnovers (oblique-line shading), from the highest Katian to uppermost Hirnantian. The Hirnantian isotopic carbon excursion (HICE) is not
restricted to the excursion associated with LOGC 3 at the top of the Ellis Bay Fm. The dashed pink curve is a representation of the Katian istopoic
background.

chronostratigraphy?®. An apparent single peak may represent
only disjointed parts (Fig. 4) of a hypothetically complete S1B3Cm
curve for just one of several repetitious LOGCs, or a composite
signal from an artificially stacked section.

Whatever the temporal extent of HICE, our sequence
stratigraphic framework warrants reconsideration of the pub-
lished ‘cause-and-effect’ scenarios for its origin. The rising limb of
the 13C excursion at the base of the Ellis Bay Fm. (Fig. 3) is
associated with a highstand that follows the LOGC 1-2 transition,
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while its descending limb spans several high-frequency glacio-
eustatic cycles within the late regressive to TSTs of the LOGC 2.
In this case, there is therefore no apparent connection between
eustasy and the 813C.anp, curve. The simplest explanation is to see
the LOGC 2 isotopic signal as that of regional epeiric water
masses with their distinctive variations in 8'3C (ref. 44). In
contrast, the subsequent, exceptionally high-amplitude excursion
is within the TST of LOGC 3, and is associated with a drastic
basin-scale change of facies caused by transition from glacial to
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ravinement unconformities®2. The sequence stratigraphic interpretation differentiates low-order/high-significance regressive (orange and yellow triangle)
and transgressive (purple triangle) system tracts. The corresponding first-order unconformity coincides with the base of the Laframboise Member.
High-order cycles represented by white triangles are present in the LOGC 3 TST, which commences with the base of the Laframboise Member.

(b) The same sequence in the ‘linear’ timescale perspective of this succession of depositional events. It includes relatively long depositional hiatuses
(oblique-line shading). At Anticosti, the high-frequency glacio-eustatic sea level changes, similar to those recorded in the near-field glacial record of
Morocco, are represented by unconformities coeval with the glacial maxima. One recorded interglacial event (Laframboise Mb.) is interpreted here as a
single high-order GSS within the larger TSTof LOGC 3. (c) An alternative view of the isotopic excursion, which includes the stratigraphic hiatuses. The 8'3C
record captures only disjointed segments of the isotope signal. In particular, the 8'*C curve does not include values from the time interval that corresponds
to the Hirnantian glacial climax. We suspect that the trend from background levels to the maximum in fact combines an initial rise that predates the glacial
climax, the associated hiatus and the subsequent maximum that postdates the glacial climax. This maximum is developed mainly within the reefal

limestones constituting the highstand facies of a particular high-order GSS.

warmer climates (reefs of the Laframboise Mb.). At a higher
resolution, the excursion appears to be confined to the highstand
of a high-order GSS (Fig. 4), thus peaking at times of rising sea
levels associated with deglaciation. This coincidence is opposite to
the postulated lowstand conditions that are essential in the
‘weathering’ scenario'! and the model can be discounted as a
potential explanation. The ‘productivity’*” and related ’circulation
pattern’ explanations*®® could perhaps offer plausible alter-
natives, providing it can be demonstrated that the isotopic
excursion is not facies dependent. Our highstand nadir of isotope
excursion can then be consistent with the scenario that invokes
carbon storage in the deeper parts of the shelf®, albeit
constrained—because of it high amplitude—to basinal, not
global, scales (see box model in Supplementary Discussion and
Supplementary Tables 2 and 3). In such a context, the particular
highstand conditions favourable for the development of carbon
excursions may arise at distinct locations during any high-order

6

GSSs. If so, it is the short duration of contiguous high-order
GSSs that give the impression of a synchronous, worldwide
phenomenon during the LOGC 3 transgressive trends. For minor
excursions, such as those in LOGC 1 or in the uppermost (below
the unconformity) Ellis Bay Fm., we contend that our present-day
knowledge of carbon isotope systematics does not permit unique
diagnostics of causative factors and scenarios. We therefore desist
from their interpretation.

In summary, providing our sections represent sufficiently
comprehensive archives of the latest Ordovician development, we
dispute the apparent association of each LOGC with an individual
isotopic excursion. At higher resolution, the relationship with sea-
level history differs from case to case, indicating that it is not a
unique forcing but likely a combination of processes that is
involved in '*C enrichment?!.

Similar reasoning may suggest that ‘pulses’ in patterns of the
end-Ordovician biological extinction result from telescoping of
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segments from the stratigraphic record, as must be the case for
hiatus-dominated successions?’. The two phases of the Late
Ordovician mass extinction that were documented worldwide in
earlier studies'”?! are however confirmed also by our results on
the Anticosti Island (Fig. 3 and Supplementary Fig. 2). Our
correlation framework moreover indicates that these turnovers
are relatively long-lasting time intervals that encompass several
glacio-eustatic fluctuations of the high or highest GSSs in
the Anti-Atlas record. Whether these turnovers originate from
evolution specifically related to LOGC developments, or whether
they only mirror a succession of stacked, quasi-instantaneous,
pulses is beyond resolution of our data set, regardless of their
potential combination within protracted, global events?!>, The
ensemble of our sections studied represents only a fraction of
affected palaeohabitats and biota, and, as explained, sections that
contain complementary palacontological data cannot be readily
correlated into our framework; our analyses thus likely
undersamples the full biotic dynamics through this interval.
Yet, our juxtaposition of extinction phases to glacial development
suggests a more nuanced scenario than previously advocated
(Fig. 3).

The older turnover, which has classically been associated
with the onset of the Hirnantian glaciation at the base of the
N. extraordinarius Biozone, spans an interval that includes LOGC
1 deglaciation and the early LOGC 2 highstand. This turnover
corresponds therefore mostly to the first major interglacial period.
The models that are based on processes linked to glacial onset,
such as the shrinkage of biotic ecospace, temperature decline
or develogment (or the loss) of anoxia during falling sea
level!»1520.21 " are thus not compatible with this revised
scenario. Instead, processes linked to deglaciation dynamics (for
example, amplification of meltwater fluxes that enhance ocean
stratification), or flooding of the shelves by relatively deep anoxic
waters!321°1 appear to be more likely scenarios for this first
turnover, but they are not applicable, as previously envisioned,
for the second turnover. The second turnover that we recognize
in LOGC 3 is an event traditionally assigned to the lower part of
the N. persculptus Biozone. This extinction/recovery pattern
affects mostly macrofauna in the Anticosti Island succession
(Supplementary Fig. 2). The phytoplankton crisis, on the other
hand, commenced beneath the regional unconformity (Fig. 4),
that is before glacial climax of LOGC 3 (refs 42,52), suggesting
that the second end-Ordovician faunal turnover may have been
initiated already during the late Hirnantian ice-sheet waxing, thus
casting doubt on a unique causative linkage that would have been
confined to final deglaciation. Note nevertheless that the
ubiquitous existence of worldwide hiatuses at that time makes
any interpretation tentative.

While we appreciate the merits of a sophisticated model-driven
approach, and welcome the impetus derived from it, the insights
arising here from the application of basic geological methods
underline the need for detailed understanding of the rock record
as well'®. In this contribution, temporal relationships of near-field
and far-field records for the end-Ordovician glaciation are
considered within a high-resolution, multiorder correlation
framework that reflects a Cenozoic-style hierarchy of glacio-
eustatically driven oscillations consisting of three main cycles and
superimposed  higher-order subcycles. This interpretation
questions earlier views that were based on lower resolution data
sets for a simple latest Katian decline in sea level followed by its
rise in the upper Hirnantian. An oversimplified sedimentary
succession likely incorporates significant hiatuses and represents
only a partial record of the entire time interval'®>3, Frequently,
such stratigraphic sections correspond to vertically juxtaposed,
unrelated parts of glacial cycles, resulting in biased timing of
biochemical signals relative to the glacial tempos. On the basis of

our framework, we anticipate that the most easily captured phases
in the worldwide end-Ordovician development should reflect the
initial waxing stage and potentially the immediately ensuing
flooding event (LOGC 1), followed by later reflooding of the
shelves at the end of LOGC 3. In more comprehensive
successions, the maximum flooding interval at the LOGC 2-3
transition (mid-Hirnantian transgression®) will likely yield a
decipherable signature®?.

The orbitally controlled depositional record of a glacial interval
will mostly be underrepresented in proven or suspected hiatuses.
These may originate from nondeposition, subaerial or subglacial
unconformities, transgressive post-glacial ravinement processes,
mass movements or from erosion by bottom currents, the latter
being particularly effective for the deeper parts of shelf basins.
Due to the lack of Palaeozoic deep-sea records, the absolute
timing and calibration of the Ordovician glaciation may remain
enigmatic'3. We envision therefore that future progress in
understanding the temporal, spatial and causal evolution of the
Late Ordovician environmental record will have to rely on high-
resolution methods that capture multiorder sequence stratigraphy
and related proxies along depositional profiles on a regional scale.
Our advances using these methods include: rejection of the earlier
cause-and-effect scenarios for HICE(s), as these no longer fit with
the revised context of glacial/ glacio-eustatic development; the
suggestion that low-order LOGCs likely represent the 1.2 Myr
long obliquity cycles that modulated ice-sheet dynamics, similar
to scenarios proposed for the Oligocene; and the insight that the
first Hirnantian extinction pulse, contrary to earlier studies, was
linked to an intervening melting phase, not to the initial cooling
phase of the end-Ordovician.

Methods

GSSs. Sequence stratigraphic correlation frameworks are based on visual corre-
lations of marker beds along continuous exposures at the 10-30 km scale (Fig. 2)
and on refined, regional scale, chitinozoan-based biostratigraphies for northern
Gondwana®*8 and eastern Laurentia®®®C. This results in correlations that are
noticeably different from lithostratigraphic schemes (Supplementary Figs 1 and 2).
MES and a variety of erosion surfaces have been delineated in the field. The MFS
coincide with deeper, usuallgr condensed, depositional conditions and serve as
bounding surfaces for GSSs®!, ideally including a lower regressive system tract
(RST) and an upper transgressive system tract (TST). Erosional surfaces
correspond to glacial erosion surfaces (Morocco); subaerial unconformities
reworked by transgressive ravinement processes (SR-U sensu Embry, 2009 (ref. 62);
Anticosti); or sharp-based erosional surfaces punctuating regressive facies trends
and ascribed in most cases to regressive surfaces of marine erosion (Anti-Atlas and
Anticosti). We favour GSSs over Trangressive/Regressive®? (T-R), or depositional
sequences® because their bounding surfaces (MES) better approximate late
deglaciation conditions and thus appropriately bracket glacial cycles. In this
scheme, a post-glacial highstand of an interglacial is represented by deposits that
constitute the lower part of the subjacent sequence.

Sequence hierarchy. Stratigraphic surfaces have been assigned to a hierarchy of
GSSs. The significance of facies shifts and/or their penetration into the basin are
used as criteria to assess the relative magnitude of base-level falls in successive,
multiorder sequences. It results in a data-driven hierarchy®?, different from a
frequency-related scheme based on a priori assumptions about durations of
sequences. The highest-order (low significance) GSSs display limited facies shifts,
both in the basin and at basin edge. More significant are the high-order genetic
sequences, which comprise several highest-order GSSs and/or include abrupt facies
shifts associated with coeval, or at least suspected, erosion surfaces at basin edge.
The low-order sequences (highest significance) are made up of a suite of high-order
sequences, the stacking pattern of which defines long-term RST and TST. They are
bounded by the major MFS associated with severe condensation (for example,
phosphogenesis in the Anti-Atlas). They include in their most regressive part (late
RST or early TST) one or several important erosional surfaces such as shoreline
ravinement unconformities, or glacial erosion surfaces in the upper Hirnantian in
Morocco, which expand toward basinal areas. This approach is often not
appropriate for maximum flooding intervals characterized by relatively deep
depositional conditions, where facies shifts are poorly deciphered. Here, an
alternative, frequency-related, hierarchy is frequently applied”.

Base-level falls associated with glacial erosional surfaces are recognized on the
basis of: their basinward extent at regional scale®® (Supplementary Fig. 1); the
development/absence of well-organized subglacial shear zones that indicate fully
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subglacial/marginal ice fronts®4, Maximum erosional depths are not considered to
be a measure of the significance of a glacial surface. We are aware that such
estimates reflect glacial extents rather than true ice-sheet volumes, but they do have
significance when dealing with high- and low-order GSSs.
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Supplementary Figure 1

Bio-, and lithostratigraphy in the Anti-Atlas. In southern Morocco, the end-Ordovician record (a-d) is
part of the up to 5 km thick Palaeozoic succession preserved in the central Anti-Atlas depositional trough
(e, modified from Destombes et al.1). It was folded during the Hercynian orogeny and currently offers a
world-class record of predominantly shallow-marine Cambrian to Carboniferous depositional
sequences23. There, the Ordovician succession is up to 2 km in thickness. The Lower Palaeozoic
succession is dominated by shallow-marine siliciclastics. During the latest Ordovician, offshore shales
prevailed in the basin* (Bou Ingarf/Tazzarine area). They graded laterally at basin edge into shoreface to
tidal facies, which migrated basinward during regressive events. Only in the middle-late Hirnantian,
glaciomarine to fluvioglacial environments arose.

Lithofacies and interpreted depositional environments are shown for four sections distributed from the
latest Ordovician basin edge to the basin centre of the central Anti-Atlas depositional trough. The two
basin-edge sections on the left-hand side (a-b) specifically represent latest Ordovician stratigraphies in
locations that do not show a subsequent glacial overdeepening event. The third log (c) specifically
represents a synthetic section with superimposed glacial erosion surfaces, the depth of which is in fact
deeper than illustrated, in the 75-200 m range (f). In this location, fully bioturbated shallow-marine
intervals noticeably occur in between glacial erosion surfaces. The stratigraphic distribution of a pre-
glacial, lower to middle Hirnantian, Hirnantia or Hirnantia-related fauna is shaded!56. The section to the
right (d) depicts a basin-axis location, within which the ice sheet arrived later. Here, three individual
glacial erosion surfaces numbered 3 to 5 are documented?, yet the glacial erosion surfaces 1, 2 and 6 are
not observed (i.e., related ice fronts did not reach the basin centre, see f). The Ouzregui Beds, at the
Katian/Hirnantian boundary, correlate to the Pernik Beds of the Prague Basin?58.

The late Katian to Hirnantian chitinozoan biozones? of the upper Ktaoua and lower and upper Second Bani
formations are illustrated for the two main sections (unpublished data at basin edge; at the basin
centre*10). In the basin-edge section, “ Upper Ktaoua“ and “Lower Ktaoua “ formation names are in
brackets to indicate that they are not coeval with formations in the basin-centre type section; chitinozoans
of the “ Upper Ktaoua Fm. “ in the basin-edge sections belong to the elongata Biozone (Hirnantian), while
those of the Upper Ktaoua Fm. at the basin axis indicate the merga Biozone (latest Katian). As a
consequence, the “ Upper Ktaoua Fm. “ at the basin-edge is coeval with the lower member of the Second
Bani formation.

The lower diagram (f) tentatively illustrates the spatial and temporal distribution of glacial erosion
surfaces numbered 1-6 that have been mapped out and correlated from the basin edge to the basin centre
in the last ten years. Glacial surfaces are essentially amalgamated toward the basin edge, with the
exception of deep downcuttings or palaeovalleys (mainly tunnel valleys!!) and intervening successions
progressively open basinward. Glacial erosion surfaces 1 and 2 have the smallest extent, as they have not
been so far observed in the Bou Ingarf area*!2 (BI). The Tizi n'Tazougart palaeovalley (TzT) has been
illustrated beforel13. Glacial erosion surfaces 3 and 4 correspond to the Hirnantian glacial maxima and
expand northward at least into the High Atlas, and at least one of the two reaches the Meseta areal“.
Glacial erosion surfaces 5 and 6 mark ice-sheet front readvances occurring during the overall deglaciation
at the end of the Hirnantian, but may be only of regional significance. The glacial erosion surface 6 is
associated with the tunnel valley known as the Foum Larjam palaeovalley (FoL 114). The complexity
generated by superimposed glacial erosion surfaces has been schematically accounted for in between the
two sedimentary logs illustrated in the figure 2.

Above glaciation-related deposits, a Hirnantia fauna is preserved in places, which represents a postglacial
recovery distinct from the earlier (shaded) Hirnantia fauna that predates the occurrence of glacial
surfaces. Stratigraphic relationships at the transition from latest Ordovician to early Silurian strata are to
some extent obscured by a Telychian unconformity. Rhuddanian strata (lowermost Silurian) have been
documented overlying the Ordovician sandstones'!5 in the area corresponding to the three most proximal
sections. Conversely, at the basin axis, an erosional surface (transgressive surface) truncates the
uppermost glaciation-related strata, which include cryogenic structures, and which are sealed by
Telychian sandstones and shales of the spiralis graptolite Biozone15.16,
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Supplementary Figure 2

Bio-, litho-, and chemostratigraphy at Anticosti Island. The upper 900 m of the >2 km thick Sandbian
to Telychian Anticosti succession (a and d) constitutes a comprehensive, latest Ordovician to early
Silurian, record of thick, storm-dominated depositional sequences!’. Mid to outer ramp carbonate facies
that prevail in the western part of Anticosti Island grade eastward towards the basin margin into thinner,
more siliciclastic-rich inner to proximal mid ramp facies that include several local discontinuities!819. The
first-order stratigraphic trends of this exposed succession display a long-term shelf aggradation from the
late Katian to the early Telychian, culminating into a shelf progradation and basin fill due to the reduced
post-Taconic tectonic subsidence during the Telychian. The shelf aggradation phase is, however,
interrupted in the late Hirnantian by the presence of atypical shallow water limestones bounded by two
regional disconformities extending far into the basin.

The late Katian to early Rhuddanian chitinozoan biozones?0 of the upper Vauréal, Ellis Bay, and lower
Becscie formations are illustrated for the western (b) and eastern (c) sections of Anticosti Island. From
the base of the Ellis Bay Formation to the base of the uppermost Laframboise Member at the west end of
the island, three chitinozoan zones are distinguished in ascending order: the florentini-concinna Zone, the
gamachiana Zone and the taugourdeaui Zone!%21, These zones are all considered Hirnantian in age, based
on several concordant paleontological data related to the occurrence of pre- and post-extinction
Hirnantian biota. This statement harmonizes with those previously reached on the basis of acritarchs??, of
brachiopods?3-29, of stromatoporoids39, and of graptolites3! (the black star in the West End section locates
a graptolite assemblage identifying the N. persculptus Biozone). Other faunal groups display similar
patterns including crinoids32, nautiloids33, and rugose corals (McLean and Copper, written commun. 2012).
In the western section, the member names of the Ellis Bay Formation are in brackets to indicate that they
are not coeval with their eponyms of the eastern section; as an example, chitinozoans of the Grindstone
Member in the eastern section belong to the H. crickmayi Zone, while those of the “Grindstone Member” in
the western section indicate the H. florentini-C. concinna Zone. As for the Anti-Atlas, revised chitinozoan
biostratigraphy results in regional-scale correlations that are noticeably different from lithostratigraphic
schemes. The lithostratigraphic framework of the latest Ordovician strata exposed on Anticosti Island is
currently under revision (P. Copper, pers. commun. 2012).

Depositional facies at the highly subsiding western end of the island are dominated by mid- to outer-ramp,
storm-dominated carbonates with calcareous shales834, Storm-influenced siliciclastic shoreface to mid
ramp sediments prevail at the eastern end of the island. Oncolitic limestones associated with local
metazoan-calcimicrobial reef development are present along the entire outcrop belt in the Laframboise
Member of the uppermost Ellis Bay Formation?23.

Our high-resolution 813C curve (n= 135 micrites; (a) and Supplementary Table 1) extends from the
Vauréal Formation up to the lower Becscie Formation at the west end of the island35. For the first 100
meters, 613C values are relatively stable and contain values of approximately 0 to 1 %o, with a mean of
0.4 %o and a standard deviation of 0.25 %o; the orange strip in (a) represents the 95 % confidence
interval. These represent the background values for §13C prior to the very latest Katian. The Hirnantian
age of the Ellis Bay Formation confirms that the Hirnantian isotopic carbon excursion (HICE) is not
restricted to the main peak in the Laframboise Member, but includes the smaller excursions in the lower
part of the formation and in the uppermost part of the Vaureal Formation. The §13C drops to pre-excursion
values in the A. ellisbayensis chitinozoan zone at the base of the Becscie Formation during the uppermost
N. persculptus Zone?°.

The Middle Ordovician to Llandovery portion of the surface and subsurface stratigraphy of the Anticosti
Basin is illustrated in (e) (modified from Long!7). The subsidence curve of the Anticosti succession shows
periods of increased subsidence rates during the Sandbian-Katian and Aeronian that are related to
Taconian and Salinic tectonic events further south in the Humber Zone and Gaspé Belt3¢. Coupled with a
sustained sediment supply within the basin, the Anticosti record is exceptionally thick (e.g. Sandbian to
Katian 1600 m, Hirnantian ~100 m, Rhuddanian to Telychian 500m), one or two orders higher than
present in age equivalent carbonate sections of other shallow epeiric or ramp settings37. This argues
against the proposition, based on chemostratigraphic analysis38-4! that the Hirnantian and its associated
HICE could be restricted to less than 10 m within the uppermost Ellis Bay Formation (see also Fig. 4 in the
main text).
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Supplementary Figure 3

Stratigraphic sampling of shelf settings during glaciation. Conceptual models, based on Jervey’s
approach*?, illustrate relationships between the rates of relative base-level change (glacio-eustasy and
subsidence), initial water depth and sediment supply for shelfal archives during icehouse conditions. The
resulting stratigraphic columns in siliciclastic shelf environments after three scenarios are discussed
below.

The glacio-eustatic forcing is based on the Quaternary glacial/interglacial model from Isotopic Stages 1 to
11. The relative sea-level in (a) includes a long-term subsidence-related component of 40 m for time
interval under consideration, while no subsidence is assumed in (b) and (c). The green time intervals are
times with corresponding depositional units, while the red segments represent hiatuses, the latter
subaerial erosion surfaces or time-transgressive sedimentary condensations*3. In (a), subsidence
combined with moderate initial water depths (~ 100 m) and relatively high sediment supply result in
~42% stratigraphic sampling and 58% hiatuses. The initial glacio-eustatic oscillations (time intervals 11-
7) are well represented in the depositional succession, while hiatuses (time intervals 6 and 4-2)
correspond to most of the later lowstand events**. The resulting picture is that of high-frequency cycles,
particularly from intervals with the greater sea-level highstands.

The scenario in (b) is as in (a), but without subsidence and with an initial water depth reduced to < 100 m.
The outcome is a thin succession with a very low (<20%) stratigraphic sampling and multiple, severe,
amalgamated hiatuses. Only the record of the earliest sea-level evolution is preserved despite abundant
sediment supply. In contrast, for scenario (c), with a significant initial water depth of > 100 m, in general a
deeper shelf beyond the shelf roll-over, the stratigraphic sampling is substantial, at ~60%; despite low
sediment supply in this case, only the later glacio-eustatic lowstand events correspond to erosion surfaces.
However, the resulting stratigraphic column is thin, with a poorly decipherable record.

For a given glacio-eustatic scenario, it is the rates of shelf subsidence, sediment supply, and initial
depositional depths at glaciation onset that control sampling and temporal extent of stratigraphic units#>.
At any rate, stratigraphic hiatuses account for 40% to 80% of the time span in shelfal domains. Basin
overfilling resulting in erosion and hiatuses is delayed when subsidence is active (a) or initial water depth
is significant (c). Active subsidence results in a great number of depositional units and a representative
record, providing the rate of sediment supply is adjusted to subsidence rates (a). Negligible or moderate
subsidence rates (b), or great initial water depths (c), result in a limited number of well differentiated
depositional units**: in (b), depositional units essentially superimpose a set of discrete cycles; in (c),
several low- to high-frequency cycles are amalgamated. Similar relationships are expected in carbonate
platforms and all three scenarios are potentially applicable to the latest Ordovician case studies. Applied
to the Hirnantian record, we suggest that the Anticosti Island stratigraphy resembles the (a)-type diagram.
See also Permian—Carboniferous case studies*6:47,

For the glaciated shelf, contrasting records arise at outer and inner shelf settings (d). The outer shelf
includes a pro- to inter-glacial stratigraphic record, generating sequences somewhat similar to the (a-c)
scenarios (green parts) with hiatuses only at glacial maxima (in red). The inner shelf record, on the other
hand, samples major interglacials, and most of the time is represented by erosion surfaces%849.59,
Interestingly, four glacial time intervals and related glacial erosion surfaces are captured in both cases, but
they do not represent coeval glacial cycles. Clearly, the glaciated inner shelf record (e.g. Mauritania, Libya
or Niger in the end-Ordovician25152) is not correlatable in a one-to-one manner to depositional units of
the far-field Anticosti Island stratigraphic sampler. The Anti-Atlas record that is understood as that of a
glaciated outer shelf!? is expected to correlate more closely with the Anticosti Island record, except at the
time of glacial climax.
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Supplementary Table 1

813C dataset from Katian to lowermost Silurian at the Anticosti Island. Stable isotope
measurements were made on either micritic matrixes or the micritic phase of pelloids in
grainstone facies35. Some samples were analyzed more than once: "QCD" indicates a Quality
Control Duplicate, which is used to test the accuracy of the mass spectrometer, "repeat” denotes
a sample that was analyzed again due to it being an anomalous measurement, or having
encountered a problem in the process of measurement. The data are listed relative to the PDB
standard. Sampled section 1A, West End (Baie St. Claire - Laframboise Section); its base is in the
“Homard” Member of the Vaureal Formation; it spans the entire Ellis Bay Formation, and
terminates in the lower Fox Point Member of the Becscie Formation.

Height
Sample # (m) Description O13C (%0) 880 (%0)
B-M-01 0 mudstone/packstone 0.3 -3.22
B-M-02 1.33 wackestone/packstone 0.24 -2.98
B-M-03 2.66 wackestone/packstone 0.18 -3.15
B-M-03 QCD 2.66 wackestone/packstone 0.16 -3.35
B-M-04 4 wackestone/packstone 0.32 -2.74
B-M-05 5.33 wackestone/packstone 0.05 -4.05
B-M-06 6.66 mudstone/packstone 0.26 -3
B-M-07 8 wackestone 0.2 -3.11
B-M-08 9.33 wackestone 0.07 -3.92
B-M-09 10.66 packstone 0.26 -3.68
B-M-10 12 mudstone/wackestone 0.08 -4.07
B-M-11 13.33 wackestone/packstone 0.4 -4.34
B-M-12 14.66 mudstone/packstone 0.41 -4.25
B-M-13 16 mudstone/wackestone 0.23 -4.66
B-M-13 QCD 16 mudstone/wackestone 0.26 -4.64
B-M-14 17.33 mudstone 0.59 -4.27
B-M-15 18.66 mudstone/wackestone 0.22 -4.32
B-M-16 20 mudstone/wackestone 0.49 -3.83
B-M-17 21.8 wackestone 0.66 -5.01
B-M-18 23.6 mudstone/wackestone -0.18 -4.74
B-M-19 25.4 wackestone 0.32 -4.83
B-M-20 27.3 wackestone/packstone 0.35 -4.13
B-M-21 29.1 wackestone/packstone 0.63 -4.02
B-M-22 29.9 packstone 0.18 -3.88
B-M-23 32.7 packstone -0.03 -4.13
B-M-24 34.6 wackestone 0.51 -4.45
B-M-24 QCD 34.6 wackestone 0.48 -4.47
B-M-25 36.4 wackestone 0.49 -4.13
B-M-26 38.2 mudstone/wackestone 0.52 -3.87
B-M-27 40 wackestone 0.43 -4.74
B-M-28 41.8 wackestone 1.53 -1.68
B-M-28
repeat 41.8 wackestone 1.75 -1.47
B-M-29 43.6 mudstone/wackestone 0.6 -3.42
B-M-30 45.4 mudstone/wackestone 0.3 -4.12
B-M-31 47.3 mudstone/wackestone 0.46 -4.48
B-M-32 49.1 wackestone 0.7 -4.26



B-M-33
B-M-33
B-M-34
B-M-35
B-M-36
B-M-37
B-M-38
B-M-39
B-M-40
B-M-41
B-M-42
B-M-43
B-M-43
B-M-44
B-M-45
B-M-46
B-M-47
B-M-48
B-M-49
B-M-50
B-M-51
B-M-52
B-M-53
B-M-53
B-M-54
B-M-55
B-M-56
B-M-57
B-M-58
B-M-59
B-M-60
B-M-61
B-M-62
B-M-63
B-M-63
B-M-64
B-M-65
L-M-01
L-M-02
L-M-03
L-M-04
L-M-05
L-M-06
L-M-07
L-M-08
L-M-08
L-M-09
L-M-10
L-M-11
L-M-12
L-M-13
L-M-14

QCD

QCD

QCD

QCD

QCD

49.9
49.9
52.7
54.6
56.4
58.2
60
61.8
63.6
65.4
67.3
69.1
69.1
69.9
72.7
74.6
76.4
78.2
80
81.66
83.33
85
86.66
86.66
88.33
90
91.66
93.33
95
96.66
98.33
100
101.66
103.33
103.33
105
106.66
100
102.5
105
107.5
110
110.6
111.1
111.7
111.7
112.2
112.8
113.3
113.9
114.4
115

wackestone/packstone
wackestone/packstone
mudstone/wackestone
packstone
mudstone/packstone
wackestone
wackestone/packstone
mudstone/wackestone
wackestone
wackestone
mudstone/wackestone
wackestone/packstone
wackestone/packstone
mudstone/wackestone
mudstone/packstone
mudstone/packstone
wackestone/packstone
wackestone/packstone
mudstone/wackestone
wackestone/packstone
mudstone/wackestone (stylolitic)
mudstone/wackestone
mudstone

mudstone

mudstone

mudstone
mudstone/wackestone
mudstone/wackestone
wackestone
wackestone
wackestone

mudstone (stylolitic)
mudstone
mudstone/wackestone
mudstone/wackestone
wackestone/packstone
mudstone/wackestone
packstone (brachiopod)
wackestone/packstone
wackestone

packstone

packstone

packstone

packstone (brachiopod)
wackestone/packstone
wackestone/packstone
packstone
wackestone/packstone
wackestone

packstone

packstone
packstone/grainstone

0.7
0.72
0.68
0.36
0.85
0.39
0.88
0.58
0.15
0.37
0.48
0.38
0.36
0.52
0.62
0.32
0.71
0.01
-0.01
0.28
-0.07
0.29
0.44
0.43
0.57
0.3
0.36
0.33
0.4
0.45
0.16
0.55
0.78
0.97

1.22
0.93
0.8

0.71
1.06
1.01
0.84
0.44
0.25
0.76
0.74
0.61
0.98
0.26
0.66
1.16
0.85

-3.64
-3.96
-4.05
-4.23
-3.58
-3.83
-3.48
-4.34
-3.94
-3.65
-3.53
-4.18
-4.18
-3.65
-3.36
-3.57
-4.26
-3.85
-4.23
-3.72
-4.62
-3.43
-3.68
-3.65
-3.76
-3.71
-3.62
-3.69
-3.82
-3.66
-3.97
-3.45
-3.46
-2.89
-2.9

-3.02
-3.08
-3.46
-3.26
-4.58
-3.21
-3.36
-3.76
-3.13
-3.04
-2.99
-3.22
-3.04
-3.43
-3.33
-3.48
-3.89



L-M-15
L-M-16
L-M-17
L-M-18
L-M-18
L-M-19
L-M-20
L-M-21
L-M-22
L-M-23
L-M-24
L-M-25
L-M-26
L-M-27
L-M-28
L-M-28
L-M-29
L-M-30
L-M-31
L-M-32
L-M-33
L-M-34
L-M-35
L-M-36
L-M-37
L-M-38
L-M-38
L-M-39
L-M-39
repeat

L-M-40
L-M-41
L-M-42
L-M-43
L-M-44
L-M-45
L-M-46
L-M-47
L-M-48
L-M-49
L-M-50
L-M-50
L-M-51
L-M-52
L-M-53
L-M-54
L-M-55
L-M-56
L-M-57
L-M-58
L-M-59
L-M-59
L-M-60

QCD

QCD

QCD

QCD

QCD

115.83
116.66
117.5
118.33
118.33
119.16
120
120.83
121.66
122.5
123.33
124.16
125
127.5
130
130
132.5
134.6
136.7
138.8
140.9
143
145.1
147.2
149.3
151.4
151.4
153.5

153.5
155.6
157.4
159.2
161

162.8
164.6
166.4
168.2
170

171.8
173.6
173.6
175.4
177.2
179

180.8
182.6
184.4
186.2
188

188.9
188.9
189.8

packstone

packstone

grainstone (peloidal)
packstone

packstone

packstone

packstone

wackestone
wackestone
wackestone

mudstone

packstone

packstone
wackestone/packstone
packstone

packstone
wackestone/packstone
wackestone
mudstone/wackestone
mudstone/wackestone
wackestone
wackestone
wackestone
wackestone
mudstone/wackestone
wackestone
wackestone

mudstone

mudstone
mudstone/wackestone
mudstone

wackestone
wackestone/packstone
wackestone
wackestone/packstone
wackestone/packstone
packstone

wackestone
wackestone
mudstone/wackestone
mudstone/wackestone
mudstone/wackestone
wackestone
wackestone
wackestone
wackestone
wackestone

packstone

packstone
wackestone/packstone
wackestone/packstone
wackestone/packstone

0.98
1.61
1.94
1.59
1.61
1.6

0.28
2.26
1.47
2.36
2.35
1.17
1.1

1.69
1.44
1.51
1.32
1.9

1.78
1.56
1.29
0.98
1.15
1.19
1.47
0.81
0.85
1.46

1.54
0.95
0.95
1.04
1.08
0.9

0.54
0.66
0.5

0.99
0.02
0.72
0.72
0.82
0.84
1.11
1.04
1.02
0.62
0.74
0.49
0.47
0.55
0.29

-3.67
-3.04
-3.13
-3.44
-3.42
-3.24
-3.25
-3.26
-3.66
-3.18
-3.02
-3.55
-3.96
-3.49
-3.5

-3.48
-3.14
-3.28
-3.32
-3.43
-3.26
-3.15
-3.48
-3.25
-3.15
-3.28
-3.29
-3.36

-3.75
-3.34
-3.46
-3.45
-3.4

-3.28
-3.38
-3.31
-3.73
-3.51
-3.18
-3.32
-3.34
-3.14
-3.26
-3.9

-3.65
-3.62
-4.58
-3.88
-3.47
-3.61
-3.53
-3.52



L-M-61
L-M-62
L-M-63
L-M-64
L-M-65
L-M-66
L-M-67
L-M-68
L-M-69
L-M-70
PL-4i
PL-5i
PL-6i
PL-7i
PL-8i
PL-9i
PL-10i
PL-11i
PL-12i
PL-13i
PL-14i
PL-15i
PL-16i
PL-17Bi
PL-18i
PL-19Ai
PL-20i
PL-21i
PL-22i
PL-23i
PL-24i
PL-25i
PL-26i
PL-27i
PL-28i

190.7
191.6
192.4
193.3
194.2
195.1
196

197.5
199

201

197.5
198

198.5
199

200

200.5
200.9
2011
201.5
201.8
2021
202.8
203.2
203.8
2041
204.3
204.5
204.8
205.3
205.6
205.9
206.2
206.5
207.5
208.5

wackestone/packstone
wackestone/packstone

packstone (brachiopod)

packstone

packstone

packstone

wackestone/packstone

mudstone

mudstone/wackestone

wackestone

Peloidal grst/pakst

Peloidal grst/packst

Peloidal grst/packst

Peloidal grst/packst

Peloidal grst/packst (top Lousy Cove)
Oncolitic packst/grst (base Laframboise)
Oncolitic packst/grst

Oncolitic packst/grst

Oncolitic packst/grst

Oncolitic packst/grst

Oncolitic packst/grst

Inter-reef wackst/packst

Inter-reef wackst/packst

Inter-reef wackst/packst

Inter-reef wackst/packst (top Laframboise)
packstone-wackestone (base Becscie)
packstone-wackestone
packstone-wackestone

wackestone

wackestone

wackestone

wackestone

wackestone

wackestone

wackestone
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0.2

0.26
0.47
0.52
0.69
0.94
1.99
1.95
1.93
1.92
1.80
1.84
2.20
2.27
2.05
2.69
3.56
3.85
4.04
3.78
3.48
2.95
3.85
3.60
3.63
2.18
2.31
1.49
1.16
1.18
0.58
0.56
0.00
0.42
0.34

-3.71
-3.83
-3.81
-4.06
-3.4

-3.1

-3.03
-3.71
-3.69
-3.92
-2.75
-3.12
-3.53
-3.42
-3.87
-3.46
-2.73
-2.38
-2.74
-2.88
-2.69
-2.96
-2.75
-2.85
-2.28
-4.39
-4.36
-3.64
-3.15
-3.08
-3.99
-3.34
-4.24
-3.80
-3.69



Supplementary Table 2

Reservoirs of the Ordovician-Silurian global carbon cycle. Estimated quantities of the
reservoirs of the Ordovician-Silurian global carbon cycle35. With flux quantities (Supplementary
Table 3), these are the basis for the box model presented in the Supplementary Discussion.

Reservoir abbr. GtC (today) GtC (0-S) 813C (%o0)
Lithosphere 1 150,000,000 69,802,795 -6
Carbonates C 70,000,000 150,000,000 O

Fossil Fuels f 20,000 10,000 -28
Reactive Sediments r 3,000 18,000 0

Deep Ocean d 38,000 220,000 0

Surface Ocean S 1,000 6,000 +3
Phytomass p 500 5 -28

Soil 2500 0

Atmosphere a 800 9,000 -6

Supplementary Table 3

Fluxes of the Ordovician-Silurian global carbon cycle. Estimated quantities for the fluxes of
the Ordovician-Silurian global carbon cycle35. With reservoir quantities (Supplementary Table
2), these are the basis for the box model presented in the Supplementary Discussion.

Flux abbr. Gt/yr (today) Gt/yr (0-S)
Terrestrial primary production a—>a 63.1 0
Marine primary production a—>a 50.5 80
Volatilization from soil a—>a 62.5 0
CO; dissolution & evasion a—>a 96 1050
CaCO3 production & dissolution s>s 0.5 0.5
CO; uptake by plants & humus a=>p 0.6 0
CO used in weathering a—>1 0.26 0.13
River input from silicates 1>s 0.25 0.13
River input from carbonates c>s 0.13 0.06
River input from organic matter c>s 0.31 0
Ocean-atmosphere exchange s>a 0.48 0
CaCOs storage in sediments s>c 0.38 0.38
Organic C storage in sediments s>c 0.1 0.1
Upwelling d->s 2.15 12.5
Volcanism & metamorphism 1> a 0.12 0.18
Hydrothermal 1> a 0.1 0.15
Uplift 1>a 0.4 0.4
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Supplementary Note

The essentials of the three Late Ordovician Glacial Cycles (LOGCs)

We here summarize the essentials that characterize the three Late Ordovician
Glacial Cycles, as understood from the high-resolution sequence stratigraphic frameworks
(Figure 2), in the near-field Anti-Atlas (Supplementary Fig. 1) and the far-field Anticosti Island
(Supplementary Fig. 2).

Anti-Atlas

LOGC 1 includes a severe latest Katian sea-level fall reflected by a major facies shift at the basin
edge and an ensuing important transgression with basin-wide sediment starvation and
condensation in the very latest Katian. Maximum regressive and early transgressive facies
together form the Ouzregui Beds%, coeval with a significant faunal turnover, corresponding to
the replacement of the diversified Late Katian faunas by a poorly diversified Hirnantia-related
fauna, which is only present at basin edges, and not in deeper parts of the depocentre.

The lower to middle Hirnantian LOGC 2 commences with a highstand. Then, two high-order GSS
with strikingly sharp-based, regressive depositional units, characterize its lower part. The older
GSS is poorly developed in basinal position, while the younger one is best recognized in the
basin centre. No subaerial exposure occurred at this time at the basin centre, but is suspected at
the basin edge. Associated significant sedimentary aggradation suggests that this regressive
succession is a lowstand wedge reflecting early time-transgressive conditions immediately
following the glacial maximum of LOGC2. A relatively long-term transgressive trend followed
that included well-defined higher-order oscillations capped by a major flooding surface with
phosphogenesis.

The late Hirnantian LOGC 3 is essentially preserved at the basin axis, and/or within restricted
glacially-related overdeepenings (Supplementary Fig. 1). Thin regressive nearshore facies
ascribed to falling stage deposits are truncated by a glacial wedge (the glacial interval in Fig. 2)
that includes several polyphased glacial erosion surfaces and related glaciomarine to
fluvioglacial units. Within the glacial wedge, glacio-eustatic cycles are difficult to decipher
because glacio-eustasy here is expected to have interfered with glacio-isostasy. The subsequent
post-glacial transgression is associated with renewed deposition at the basin margin, re-
colonisation by a Hirnantia fauna, and a severe latest Hirnantian to Rhuddanian condensation!.
In the basin centre, an early Silurian unconformity of unknown origin associated with a ca. 7 myr
long hiatus truncates the very latest deglacial Ordovician record?e.

The first-order stratigraphic trends reveal a long-term shelf progradation through the latest
Katian to the late Hirnantian, which was punctuated by multi-order regressive and/or glacial
events. The Hirnantian glacial record included in LOGC 3 is only preserved in a lowstand, basinal
position, with virtually no record (except in glacial overdeepenings) at the basin edge. Post-
glacial flooding was non-accretionary53, suggesting high rates of sea-level rise in the very latest
Hirnantian.

The glacial record (glacial erosion surface, glaciotectonic deformation, tunnel channels, ice-
contact deposits) of LOGC 1 is known in Niger5! as re-interpreted in Loi et al.4, while that of
LOGC 2 and 3 most likely correspond to the well known glacial successions in Libya, Algeria and
Mauritanial2.52,54-59,
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Anticosti Island

Several orders of depositional units, reflecting multi-order base-level changes, were identified in
the Anticosti succession that display striking similarities with the time-equivalent Anti-Atlas
sequence. During the latest Katian LOGC 1, a major sea-level fall was followed by a significant
transgressive event. This event, together with the ensuing highstand in the latest part of the
Katian, is associated with a faunal turnover during which Katian acritarchs, chitinozoans,
conodonts, brachiopods, nautiloids, crinoids, stromatoporoids, and corals are replaced by taxa
with either Hirnantian or Silurian affinities. The first perturbation in a long-lived relatively
stable Katian 613C signal coincide with late regressive conditions in the latest Katian (Mill Bay),
and not with the earlier sea-level fall (Joseph Point; Fig. 3 and Supplementary Fig. 2). Two sharp-
based, regressive units representing sea-level drops are well expressed in the western distal
basin sections during the early-middle Hirnantian LOGC 2. The older one, characterized by a
greater facies offset than the younger one, is associated with a basal regressive surface of marine
erosion resulting in a stratigraphic hiatus during the lowermost Hirnantian. Subaerial exposure
did not occur at that time at the basin centre, but was present at the basin margin. The §13C
values are typically above the Katian background with a positive 2%o0 excursion recorded above
the first sharp-based surface. A well-expressed transgressive trend with higher-order
oscillations is capped by a major flooding surface in the upper LOGC 2. This flooding event marks
areturn to typical Katian §13C values.

The middle-late Hirnantian LOGC 3 is composed of three distinct stratigraphic packages
separated by two regional disconformities. The oldest package is a sharp-based regressive unit
representing a major sea level drop. Its capping erosive surface recorded an emersion that was
smoothed by ravinement during the ensuing transgression (see Fig. 4). This regressive unit
coincides with a progressive increase in 613C values, up to +2%eo. A second faunal turnover is
recognized following the deposition and subsequent emersion of this initial package. This
second turnover shows a more abrupt replacement of acritarchs, chitinozoans, conodonts,
brachiopods, and corals than the first turnover, with the rapid disappearance of “Ordovician”
taxa. The next package is composed of transgressive oncolitic calcirudites overlain locally by
“keep-up” metazoan-calcimicrobial bioherms. The upper contact of the bioherms is erosional
has local relief up to 10 m, and has a multi-phase origin including an initial emersion, a
subsequent modification by a transgressive ravinement, and a final pyritic hardground
development. The highest positive §13C values, up to 5%o in places, are present in this middle
package. The third package, locally onlaps and abuts against the exhumed massive bioherm
cores of the underlying package. It displays a thin transgressive record at the more subsiding
basin centre, but contains thicker, slightly older proximal ramp facies at the basin margin. This
final package marks the return of pre-Hirnantian shelf aggradation architecture and displays a
relatively rapid negative isotopic shift with return to 613C background values. The late
Hirnantian LOGC-3 glacial far-field record is partially preserved at the basin centre, but reduced
at the basin edge.

Within LOGCs 1 and 2, the 813Ccan, curve rises during the late and early regressive system tracts
(lowstand and highstand conditions, respectively) and declines during transgressive and late
regressive system tracts, respectively. Note that within LOGC 2, the excursion encompasses
several higer-order stratigraphic cycles. The third and greatest excursion recorded in LOGC 3
amalgamates two signals, one predating and one postdating the LOGC 3 glacial maximum that is

14



represented by the unconformity at the base of the Laframboise Mb. These are time-regressive
and time-transgressive, respectively (Fig. 4).

The two time intervals that correspond to the first and second faunal turnovers are not
restricted to two short-term “extinction” events, supposedly glacial onset and termination,
respectively. In fact, the first turnover is essentially coincident with the first interglacial that
separates LOGCs 1 and 2. The ensuing lowermost Hirnantian stratigraphic hiatus in the Anticosti
Island succession is likely responsible for its apparent sharpness (Fig. 3). The second turnover
includes the entire glacial maximum of LOGC 3, commencing during the glacio-eustatic
regression and terminating during the early deglaciation phase.
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Supplementary Discussion

Box model of the late Ordovician carbon cycle

A variety of models have been proposed to explain the large isotopic excursion(s)
in the Hirnantian; the productivity hypothesis, the weathering hypothesis and changes in
oceanic circulation pattern. These are successively examined below, in the light of a box model
for the Late Ordovician global carbon cycle35, with the conclusion that none of them can account
for the amplitude of the observed anomaly at the global scale.

Presented here is a model designed to simulate the global carbon cycle for the Late Ordovician
world. It is based mostly on the work of Mackenzie and Lerman®?, a review of hundreds of
scientific studies of the past and present carbon cycling. This overview quantifies carbon
reservoirs and fluxes on global scales. The Ordovician-Silurian carbon cycle, based on Mackenzie
and Lerman’s model, uses high Ordovician pCO; values (~4000 ppm) and also takes into account
minimal vascular land-plant cover. This model can be used to test some of the theoretical
aspects of the hypotheses concerning the §13C excursions that occurred near the O-S Boundary.
The estimated quantities of the reservoirs and the fluxes of the Ordovician-Silurian global
carbon cycle are given in Supplementary Table 2 and Supplementary Table 3, respectively.

In this simplified model, the relationships between various reservoirs, fluxes and isotope values
of carbon are described by the conservation of mass

AM, /At = YFix - Y Fyi 9]
flux in flux out

and a similar equation involving the enrichment of organic carbon.

A(MX*Sx)/At = Z Fi-x* 6i - Z Fx-i * 6)( + 2 Fi-xo * (81+S) - 2 Fx-jo * (6x+£) (2)
inorganic carbon organic carbon

Using the product rule and the two equations above we arrive at the equation of isotope

continuity.
A8y /At = [X Fix* (8i-8x) + X Fix® * (8i+€) — X Fxi® * (6x+€)] / My (3)
Where: My represents the mass of C in a reservoir
Fix is the flux of C from reservoir i into reservoir x
F..i is the flux of organic C from reservoir x to reservoir i
Ox is the isotopic value of a carbon reservoir
€ is the depletion factor for organic carbon
M;s = 6000 Gt €=-28 %o
FLs=0.13 Gt/yr 8a=-6 %o
Fes=0.06 Gt/yr 61=-6 %o
Fas=12.5 Gt/yr 6c=0 %o
Fsa=0 Gt/yr 6¢° =-28 %o
Fs.c=0.38 Gt/yr 84 =0 %o
Fs.® = 0.1 Gt/yr 8s = +3 %o
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In the case of the global productivity hypothesis, a change in the rate of burial of organic carbon,
Fs.c°, brought the §13C of the surface ocean from 0 to 4 %o, in the timespan of approximately
100,000 to 500,000 years.

ASS* MS /At = F]-S* (6]'65) + Fc-s* (65'65) + Fd-s* (8d'65) = Fs-co * (85+£) (4’)

+4 %o * 6000 Gt/At= 0.13 Gt/yr * (-6 %0-3 %o0) + 0.06 Gt/yr * (0 %o-3 %o0) + 12.5 Gt/yr * (0 Y%o-
3 %o0) - Fs.c® * (3 %0-28 %0)

24,000 %o0Gt /At (-39 %o0Gt/yr + 25 %o * Fs.c°)

For the lower limit, At = 100,000 yr, Fs.°=1.564 Gt/yr
For the upper limit, At = 500,000 yr, Fs.°=1.556 Gt/yr

Therefore, to produce a 613C increase of 4 %o in the surface ocean, the carbon burial rate has to
increase to approximately 1.56 Gt/yr, 15 times the present day rate of carbon burial in the
oceans (0.1 Gt/yr); an unsustainable proposition on a global scale.

Cramer and Saltzman’s hypothesisé162 for ocean state changes, the value for Fqs which
represents upwelling of inorganic carbon from the deep ocean to the surface ocean, will have to
change from 12.5 Gt/yr to 0, assuming stratified oceans with no active thermohaline circulation.
This is difficult to conceive on a global scale but can be easily achieved on regional (basinal)
scales.

+4 %o * 6000 Gt/At= 0.13 Gt/yr * (-6 %o-3 %o0) + 0.06 Gt/yr * (0 %o-3 %o) + 0 Gt/yr * (0 %o-
3 %o0) - Fs.c® * (3 %0-28 %0)

24,000 %oGt /At = (-1.35 %oGt/yr + 25 %o * Fe.c°)
At=100,000 yr, Foc® = 0.064 Gt/yr
At=1500,000 yr, Foc® = 0.056 Gt/yr

Therefore, a §13C increase of 4 %o in the surface ocean is possible with modern day burial rates
of organic carbon but only on regional scales and providing the upwelling of water from the
deep ocean were to cease completely. Considering that the tide-related recirculation of deep,
dense water masses to the surface ocean is enhanced during lowstand eventss3, such
circumstances are in fact unlikely.

Note that in the Late Ordovician world, organic carbon was produced exclusively in the Surface
Ocean Reservoir. Taking the above qualifications into account, let us now consider the viability
of these earlier advocated Late Ordovician scenarios in the context of geological framework.

1) The productivity hypothesisé* argues that phytoplankton blooms resulted in preferential
removal of 13C from the water column, leading to a drawdown of atmospheric CO; that initiated
the Hirnantian glaciation, sea level drop, and generation of a widespread anoxia followed by the
late Ordovician extinction event. The above model calculations3> show, however, that the rate of
organic carbon burial would have to be 15 times that of its modern counterpart and sustained
over 107-108 years. This is an unrealistic proposition, even leaving aside the issue of the fate of
the “missing” carbon-rich sediments in coeval sedimentary sections. This could have been a
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viable scenario only if applied to localized basins within the broad epeiric seas of the Ordovician
that may not have been strictly synchronous.

2) The alternative “weathering” hypothesis and its modificationsé5-67 attributes the glaciation to
CO; drawdown initiated by enhanced silicate weathering related to the Taconic Orogeny. The
erosion of platform carbonates subsequent to glacially-induced sea-level fall is then advocated
as an explanation for the HICE. The "weathering" scenario requires as a starting assumption
riverine flux of carbon that is significantly depleted in 13C. Such isotopically depleted carbon is
presently derived from soil CO; that originates from decomposition of land-based biomass. The
positive carbon excursion in the ocean is then driven by diminution of the input from such
sources. Yet, the land-based biosphere prior to Silurian was either absent or putative and the
input from soil CO2 into the riverine systems has therefore been limited. At that time the
dissolution of carbonates must have been dominated by carbonic acid derived mostly from
ingassing of atmosperic CO; and the isotope signal of the riverine carbon flux would have been
around 0 %. Moreover, the presumed additional erosional source associated with low sea levels,
the underlying Paleozoic rocks, have §13C depleted (0-1 %o)68 relative to HICE and thus cannot
be the cause of the anomaly. The onset of §13C excursions during regressive time intervals thus
cannot be the consequence of enhanced erosion of platform carbonates, unless a significant land
cover (and related massive production of carbonic acid) can be demonstrated in the Ordovician.

3) Another alternative argues that the sea level and/or climate triggered changes in circulation
patterns 61626971 from upwelling dominated shelf circulations during highstands to downwelling
during lowstand, resulted in redox stratification with a 13C-rich upper layer due to enhanced
productivity and a 13C-depleted water body at depth. This hypothesis, in essence developed for
Silurian & 13C excursions, suffers the same limitations as (1) described above. It cannot be
produced and sustained on the scale of global oceans. This scenario is feasible only for
excursions developed on a basin scale during highstand conditions of a high-order GSS (see
Fig. 4).
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