56 research outputs found

    Spare me the details: How the type of information about automated interviews influences applicant reactions

    Get PDF
    Applicants seem to react negatively to artificial intelligence-based automated systems in personnel selection. This study investigates the impact of different pieces of information to alleviate applicant reactions in an automated interview setting. In a 2 (no process information vs. process information) Ă— 2 (no process justification vs. process justification) between-subjects design, participants (N = 124) received respective information and watched a video showing an automated interview. Testing mediation effects via different applicant reaction variables indicated that process justification is better than process information which can even impair applicant reactions. However, information did not increase organizational attractiveness compared to not receiving any information. This study sheds light on what type of information contributes to positive and negative applicant reactions to automated systems

    Collisions of inhomogeneous pre-planetesimals

    Full text link
    In the framework of the coagulation scenario, kilometre-sized planetesimals form by subsequent collisions of pre-planetesimals of sizes from centimetre to hundreds of metres. Pre-planetesimals are fluffy, porous dust aggregates, which are inhomogeneous owing to their collisional history. Planetesimal growth can be prevented by catastrophic disruption in pre-planetesimal collisions above the destruction velocity threshold. We develop an inhomogeneity model based on the density distribution of dust aggregates, which is assumed to be a Gaussian distribution with a well-defined standard deviation. As a second input parameter, we consider the typical size of an inhomogeneous clump. These input parameters are easily accessible by laboratory experiments. For the simulation of the dust aggregates, we utilise a smoothed particle hydrodynamics (SPH) code with extensions for modelling porous solid bodies. The porosity model was previously calibrated for the simulation of silica dust, which commonly serves as an analogue for pre-planetesimal material. The inhomogeneity is imposed as an initial condition on the SPH particle distribution. We carry out collisions of centimetre-sized dust aggregates of intermediate porosity. We vary the standard deviation of the inhomogeneous distribution at fixed typical clump size. The collision outcome is categorised according to the four-population model. We show that inhomogeneous pre-planetesimals are more prone to destruction than homogeneous aggregates. Even slight inhomogeneities can lower the threshold for catastrophic disruption. For a fixed collision velocity, the sizes of the fragments decrease with increasing inhomogeneity. Pre-planetesimals with an active collisional history tend to be weaker. This is a possible obstacle to collisional growth and needs to be taken into account in future studies of the coagulation scenario.Comment: 12 pages, 9 figures, 4 table

    The four-populations model: a new classification scheme for pre-planetesimal collisions

    Full text link
    Within the collision growth scenario for planetesimal formation, the growth step from centimetre sized pre-planetesimals to kilometre sized planetesimals is still unclear. The formation of larger objects from the highly porous pre-planetesimals may be halted by a combination of fragmentation in disruptive collisions and mutual rebound with compaction. However, the right amount of fragmentation is necessary to explain the observed dust features in late T Tauri discs. Therefore, detailed data on the outcome of pre-planetesimal collisions is required and has to be presented in a suitable and precise format. We propose and apply a new classification scheme for pre-planetesimal collisions based on the quantitative aspects of four fragment populations: the largest and second largest fragment, a power-law population, and a sub-resolution population. For the simulations of pre-planetesimal collisions, we adopt the SPH numerical scheme with extensions for the simulation of porous solid bodies. By means of laboratory benchmark experiments, this model was previously calibrated and tested for the correct simulation of the compaction, bouncing, and fragmentation behaviour of macroscopic highly porous silica dust aggregates. It is shown that previous attempts to map collision data were much too oriented on qualitatively categorising into sticking, bouncing, and fragmentation events. We show that the four-populations model encompasses all previous categorisations and in addition allows for transitions. This is because it is based on quantitative characteristic attributes of each population such as the mass, kinetic energy, and filling factor. As a demonstration of the applicability and the power of the four-populations model, we utilise it to present the results of a study on the influence of collision velocity in head-on collisions of intermediate porosity aggregates.Comment: 14 pages, 11 figures, 5 tables, to be published in Astronomy and Astrophysic

    The Physics of Protoplanetesimal Dust Agglomerates. IV. Towards a Dynamical Collision Model

    Full text link
    Recent years have shown many advances in our knowledge of the collisional evolution of protoplanetary dust. Based on a variety of dust-collision experiments in the laboratory, our view of the growth of dust aggregates in protoplanetary disks is now supported by a deeper understanding of the physics involved in the interaction between dust agglomerates. However, the parameter space, which determines the collisional outcome, is huge and sometimes inaccessible to laboratory experiments. Very large or fluffy dust aggregates and extremely low collision velocities are beyond the boundary of today's laboratories. It is therefore desirable to augment our empirical knowledge of dust-collision physics with a numerical method to treat arbitrary aggregate sizes, porosities and collision velocities. In this article, we implement experimentally-determined material parameters of highly porous dust aggregates into a Smooth Particle Hydrodynamics (SPH) code, in particular an omnidirectional compressive-strength and a tensile-strength relation. We also give a prescription of calibrating the SPH code with compression and low-velocity impact experiments. In the process of calibration, we developed a dynamic compressive-strength relation and estimated a relation for the shear strength. Finally, we defined and performed a series of benchmark tests and found the agreement between experimental results and numerical simulations to be very satisfactory. SPH codes have been used in the past to study collisions at rather high velocities. At the end of this work, we show examples of future applications in the low-velocity regime of collisional evolution.Comment: accepted by The astrophysical Journa

    Numerical Simulations of Highly Porous Dust Aggregates in the Low-Velocity Collision Regime

    Full text link
    A highly favoured mechanism of planetesimal formation is collisional growth. Single dust grains, which follow gas flows in the protoplanetary disc, hit each other, stick due to van der Waals forces and form fluffy aggregates up to centimetre size. The mechanism of further growth is unclear since the outcome of aggregate collisions in the relevant velocity and size regime cannot be investigated in the laboratory under protoplanetary disc conditions. Realistic statistics of the result of dust aggregate collisions beyond decimetre size is missing for a deeper understanding of planetary growth. Joining experimental and numerical efforts we want to calibrate and validate a computer program that is capable of a correct simulation of the macroscopic behaviour of highly porous dust aggregates. After testing its numerical limitations thoroughly we will check the program especially for a realistic reproduction of various benchmark experiments. We adopt the smooth particle hydrodynamics (SPH) numerical scheme with extensions for the simulation of solid bodies and a modified version of the Sirono porosity model. Experimentally measured macroscopic material properties of silica dust are implemented. We calibrate and test for the compressive strength relation and the bulk modulus. SPH has already proven to be a suitable tool to simulate collisions at rather high velocities. In this work we demonstrate that its area of application can not only be extended to low-velocity experiments and collisions. It can also be used to simulate the behaviour of highly porous objects in this velocity regime to a very high accuracy.The result of the calibration process in this work is an SPH code that can be utilised to investigate the collisional outcome of porous dust in the low-velocity regime.Comment: accepted by Astronomy & Astrophysic

    Broad emission lines for negatively spinning black holes

    Full text link
    We present an extended scheme for the calculation of the profiles of emission lines from accretion discs around rotating black holes. The scheme includes discs with angular momenta which are parallel and antiparallel with respect to the black hole's angular momentum, as both configurations are assumed to be stable (King et al., 2005). We discuss line shapes for such discs and present a code for modelling observational data with this scheme in X-ray data analysis programs. Based on a Green's function approach, an arbitrary radius dependence of the disc emissivity and arbitrary limb darkening laws can be easily taken into account, while the amount of precomputed data is significantly reduced with respect to other available models.Comment: 7 pages, 6 figures; accepted by MNRAS for Publication, now matches the proof read versio

    Simulations of eccentric disks in close binary systems

    Full text link
    We study the development of finite eccentricity in accretion disks in close binary systems using a two-dimensional grid-based numerical scheme. We perform detailed parameter studies to explore the dependence on viscosity, disk aspect ratio, the inclusion of a mass-transfer stream and the role of the boundary conditions. We consider mass ratios 0.05<q<0.3 appropriate to superoutbursting cataclysmic binary systems. Instability to the formation of a precessing eccentric disk that attains a quasi-steady state with mean eccentricity in the range 0.3-0.5 occurs readily. The shortest growth times are ~15 binary orbits for the largest viscosities and the instability mechanism is for the most part consistent with the mode-coupling mechanism associated with the 3:1 resonance proposed by Lubow. However, the results are sensitive to the treatment of the inner boundary and to the incorporation of the mass-transfer stream. In the presence of a stream we found a critical viscosity below which the disk remains circular. Incorporation of a mass-transfer stream tends to impart stability for small enough viscosity (or, equivalently, mass-transfer rate through the disk) and does assist in obtaining a prograde precession rate that is in agreement with observations. For the larger q the location of the 3:1 resonance is pushed outwards towards the Roche lobe where higher-order mode couplings and nonlinearity occur. It is likely that three-dimensional simulations that properly resolve the disk's vertical structure are required to make significant progress in this case.Comment: 19 pages, 27 Figures, accepted by A&

    A comparative study of disc-planet interaction

    Get PDF
    We perform numerical simulations of a disc-planet system using various grid-based and smoothed particle hydrodynamics (SPH) codes. The tests are run for a simple setup where Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc during a few hundred orbital periods. We compare the surface density contours, potential vorticity and smoothed radial profiles at several times. The disc mass and gravitational torque time evolution are analyzed with high temporal resolution. There is overall consistency between the codes. The density profiles agree within about 5% for the Eulerian simulations while the SPH results predict the correct shape of the gap although have less resolution in the low density regions and weaker planetary wakes. The disc masses after 200 orbital periods agree within 10%. The spread is larger in the tidal torques acting on the planet which agree within a factor 2 at the end of the simulation. In the Neptune case the dispersion in the torques is greater than for Jupiter, possibly owing to the contribution from the not completely cleared region close to the planet.Comment: 32 pages, accepted for publication in MNRA
    • …
    corecore