120 research outputs found

    Age and size at maturity: sex, environmental variability and developmental thresholds

    Get PDF
    In most organisms, transitions between different life-history stages occur later and at smaller sizes as growth conditions deteriorate. Day and Rowe recently proposed that this pattern could be explained by the existence of developmental thresholds (minimum sizes or levels of condition below which transitions are unable to proceed). The developmental-threshold model predicts that the reaction norm of age and size at maturity will rotate in an anticlockwise manner from positive to a shallow negative slope if: (i) initial body size or condition is reduced; and/or (ii) some individuals encounter poor growth conditions at increasingly early developmental stages. We tested these predictions by rearing replicated populations of soil mites Sancassania berlesei (Michael) under different growth conditions. High-food environments produced a vertical relationship between age and size at maturity. The slope became increasingly shallow as food was reduced. By contrast, high food in the maternal environment reduced the slope of the reaction norm of age and size at maturity, whereas low food increased it. Overall, the reaction norm of age and size at maturity in S. berlesei was significantly nonlinear and differed for males and females. We describe how growth conditions, mother's environment and sex determine age and size at maturity in S. berlesei

    Does the definition of a novel environment affect the ability to detect cryptic genetic variation?

    Get PDF
    AbstractAnthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by ‘novel environment’, an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta‐analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad‐scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad‐sense measures of variance, and decreased variation in narrow‐sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment‐dependant genetic variation, highlighting non‐additive genetic variance as an important component of cryptic genetic variation and avenue for future research.</jats:p

    The complete mitochondrial genome of the broad-winged damselfly <i>Mnais costalis</i> Selys (Odonata: Calopterygidae) obtained by next-generation sequencing

    Get PDF
    <p>We used next-generation sequencing to characterise the complete mitochondrial genome of the damselfly <i>Mnais costalis</i> (Odonata, Calopterygidae). Illumina paired end reads were mapped against COI and 16S sequences from <i>M. costalis</i> and then extended using an iterative <i>de novo</i> map procedure. The final assembly was a contiguous sequence of 15,487 bp, which contained all standard mitochondrial coding regions and the putative A+T rich region. The gene configuration of the <i>M. costalis</i> mitogenome is similar to that of other odonates, comprising 13 protein-coding genes, large and small rRNA genes, and 22 tRNA genes. We found three intergenic spacers that are also present in all available whole odonate mitogenomes. Base composition of the <i>M. costalis</i> mitogenome is 40% (A), 20% (C), 14% (G) and 26% (T), with a high A+T content (66%). The characterisation of the complete mitochondrial genome of <i>M. costalis</i> adds to the growing list of mitogenomes currently available for odonates, and will help to improve primer design for future population genetic studies. A phylogenetic analysis including the currently available mitochondrial genome sequences of odonates suggests that <i>Epiophlebia superstes</i> is more closely related to the Zygoptera than to the Anisoptera.</p

    The Early Youth Engagement in first episode psychosis (EYE-2) study: pragmatic cluster randomised controlled trial of implementation, effectiveness and cost-effectiveness of a team-based motivational engagement intervention to improve engagement

    Get PDF
    Background: Early Intervention in Psychosis (EIP) services improve health outcomes for young people with psychosis in the medium–long term, but 25% of young people disengage in the first 12 months with costs to their mental health, families, society and the NHS. This study will evaluate the effectiveness, cost-effectiveness and implementation of a team-based motivational Early Youth Engagement (EYE-2) intervention. Method: The study design is a cluster randomised controlled trial (RCT) with economic evaluation, comparing the EYE-2 intervention + standardised EIP service to standardised EIP service alone, with randomisation at the team level. A process evaluation will evaluate the delivery of the intervention qualitatively and quantitatively across contexts. The setting is 20 EIP teams in 5 sites: Manchester, South London, East Anglia, Thames Valley and Hampshire. Participants are young people (14–35 years) with first episode psychosis, and EIP staff. The intervention is the team-based motivational engagement (EYE-2) intervention, delivered alongside standardised EIP services, and supported by additional training, website, booklets and social groups. The comparator is the standardised EIP service. Both interventions are delivered by EIP clinicians. The primary outcome is time to disengagement (time in days from date of allocation to care coordinator to date of last contact following refusal to engage with EIP service, or lack of response to EIP contact for a consecutive 3-month period). Secondary outcomes include mental and physical health, deaths, social and occupational function, recovery, satisfaction and service use at 6, 12, 18 and 24 months. A 12-month within-trial economic evaluation will investigate cost-effectiveness from a societal perspective and from an NHS perspective. Discussion: The trial will provide the first test of an engagement intervention in standardised care, with the potential for significant impact on the mental health and wellbeing of young people and their families, and economic benefits for services. The intervention will be highly scalable, supported by the toolkit including manuals, commissioning guide, training and resources, adapted to meet the needs of the diverse EIP population, and based on an in-depth process evaluation. Trial registration: ISRCTN 51629746 prospectively registered 7th May 2019. Date assigned 10th May 2019

    Estimating and Modelling Bias of the Hierarchical Partitioning Public-Domain Software: Implications in Environmental Management and Conservation

    Get PDF
    BACKGROUND: Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness for complementing multiple regression analysis. A public-domain software "hier.part package" has been developed for running HP in R software. Its authors highlight a "minor rounding error" for hierarchies constructed from >9 variables, however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example, the ranking obtained in HP is being used as a criterion for establishing priorities of conservation. METHODOLOGY/PRINCIPAL FINDINGS: Using numerical simulations and two real examples, we assessed the robustness of this HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important by its contribution in explaining the response variable frequently changed to be either most or less important with other variable orders. The probability of changing position of a variable was best explained by the difference in independent explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this difference, the more likely is the change of position. CONCLUSIONS/SIGNIFICANCE: HP should be applied with caution when more than 9 explanatory variables are used to know ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9 independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in those already published. Some recommendations to improve the analysis with this HP module are given

    Different Host Exploitation Strategies in Two Zebra Mussel-Trematode Systems: Adjustments of Host Life History Traits

    Get PDF
    The zebra mussel is the intermediate host for two digenean trematodes, Phyllodistomum folium and Bucephalus polymorphus, infecting gills and the gonad respectively. Many gray areas exist relating to the host physiological disturbances associated with these infections, and the strategies used by these parasites to exploit their host without killing it. The aim of this study was to examine the host exploitation strategies of these trematodes and the associated host physiological disturbances. We hypothesized that these two parasite species, by infecting two different organs (gills or gonads), do not induce the same physiological changes. Four cellular responses (lysosomal and peroxisomal defence systems, lipidic peroxidation and lipidic reserves) in the host digestive gland were studied by histochemistry and stereology, as well as the energetic reserves available in gonads. Moreover, two indices were calculated related to the reproductive status and the physiological condition of the organisms. Both parasites induced adjustments of zebra mussel life history traits. The host-exploitation strategy adopted by P. folium would occur during a short-term period due to gill deformation, and could be defined as “virulent.” Moreover, this parasite had significant host gender-dependent effects: infected males displayed a slowed-down metabolism and energetic reserves more allocated to growth, whereas females displayed better defences and would allocate more energy to reproduction and maintenance. In contrast, B. polymorphus would be a more “prudent” parasite, exploiting its host during a long-term period through the consumption of reserves allocated to reproduction

    Quantitative genetics of immunity and life history under different photoperiods

    Get PDF
    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality

    Chimpanzees Help Each Other upon Request

    Get PDF
    Background: The evolution of altruism has been explained mainly from ultimate perspectives. However, it remains to be investigated from a proximate point of view how and in which situations such social propensity is achieved. We investigated chimpanzees' targeted helping in a tool transfer paradigm, and discuss the similarities and differences in altruism between humans and chimpanzees. Previously it has been suggested that chimpanzees help human experimenters by retrieving an object which the experimenter is trying to reach. In the present study, we investigated the importance of communicative interactions between chimpanzees themselves and the influence of conspecific partner's request on chimpanzees' targeted helping. Methodology/Principal Findings: We presented two tool-use situations ( a stick-use situation and a straw-use situation) in two adjacent booths, and supplied non-corresponding tools to paired chimpanzees in the two booths. For example, a chimpanzee in the stick-use situation was supplied with a straw, and the partner in the straw-use situation possessed a stick. Spontaneous tool transfer was observed between paired chimpanzees. The tool transfer events occurred predominantly following recipients' request. Even without any hope of reciprocation from the partner, the chimpanzees continued to help the partner as long as the partner required help. Conclusions/Significance: These results provide further evidence for altruistic helping in chimpanzees in the absence of direct personal gain or even immediate reciprocation. Our findings additionally highlight the importance of request as a proximate mechanism motivating prosocial behavior in chimpanzees whether between kin or non-kin individuals and the possible confounding effect of dominance on the symmetry of such interactions. Finally, in contrast to humans, our study suggests that chimpanzees rarely perform acts of voluntary altruism. Voluntary altruism in chimpanzees is not necessarily prompted by simple observation of another's struggle to attain a goal and therefore an accurate understanding of others' desires in the absence of communicative signals

    Variation within and between Closely Related Species Uncovers High Intra-Specific Variability in Dispersal

    Get PDF
    Mounting evidence shows that contrasting selection pressures generate variability in dispersal patterns among individuals or populations of the same species, with potential impacts on both species dynamics and evolution. However, this variability is hardly considered in empirical works, where a single dispersal function is considered to adequately reflect the species-specific dispersal ability, suggesting thereby that within-species variation is negligible as regard to inter-specific differences in dispersal abilities. We propose here an original method to make the comparison of intra- and inter-specific variability in dispersal, by decomposing the diversity of that trait along a phylogeny of closely related species. We used as test group European butterflies that are classic study organisms in spatial ecology. We apply the analysis separately to eight metrics that reflect the dispersal propensity, the dispersal ability or the dispersal efficiency of populations and species. At the inter-specific level, only the dispersal ability showed the signature of a phylogenetic signal while neither the dispersal propensity nor the dispersal efficiency did. At the within-species level, the partitioning of dispersal diversity showed that dispersal was variable or highly variable among populations: intra-specific variability represented from 11% to 133% of inter-specific variability in dispersal metrics. This finding shows that dispersal variation is far from negligible in the wild. Understanding the processes behind this high within-species variation should allow us to properly account for dispersal in demographic models. Accordingly, to encompass the within species variability in life histories the use of more than one value per trait per species should be encouraged in the construction of databases aiming at being sources for modelling purposes

    Persistence of Pathogens with Short Infectious Periods in Seasonal Tick Populations: The Relative Importance of Three Transmission Routes

    Get PDF
    BACKGROUND: The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model. METHODOLOGY/PRINCIPAL FINDINGS: We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related "deer tick virus," emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence
    corecore