

The complete mitochondrial genome of the broad-winged damselfly *Mnais costalis* Selys (Odonata: Calopterygidae) obtained by next-generation sequencing

Journal:	International Journal of Odonatology			
Manuscript ID	TIJO-2016-0007.R1			
Manuscript Type:	Original Article			
Date Submitted by the Author:	n/a			
Complete List of Authors:	Lorenzo-Carballa, M. Olalla; University of Liverpool, Evolution, Ecology and Behaviour, Institute of Integrative Biology Tsubaki, Yoshitaka ; Center for Ecological Research, Kyoto University Plaistow, Stewart J.; University of Liverpool, Evolution, Ecology and Behaviour Watts, Phillip; Department of Biology, University of Oulu			
Keywords:	mitogenome, dragonfly, <i>de novo</i> map, phylogeny			
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.				
Lorenzo-Carballa_et-al_Mnais_mitogenome_SupplInfo-R1.doc				

2	
3	
4	
5	
6	
7	
8	
ğ	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
50	
50	
29	
nu	

The complete mitochondrial genome of the broad-winged damselfly Mnais 1 costalis Selys (Odonata: Calopterygidae) obtained by next-generation 2 sequencing 3 4 M. Olalla Lorenzo-Carballa¹, Yoshitaka Tsubaki², Stewart J. Plaistow¹ & Phillip C. Watts³ 5 6 ¹Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, UK. 7 ²Center for Ecological Research, Kyoto University, Kyoto, Japan. 8 ³Department of Ecology, University of Oulu, FI–90014 Oulu, Finland. 9 10 11 Corresponding author: M. Olalla Lorenzo-Carballa; email: m.o.lorenzo.carballa@gmail.com, 12 13 M.O.Lorenzo-Carballa@liverpool.ac.uk

 sis costalis

 14 Running head: Complete mitogenome of Mnais costalis 15

Abstract

We used next-generation sequencing to characterise the complete mitochondrial genome of the damselfly Mnais costalis (Odonata, Calopterygidae). Illumina paired end reads were mapped against COI and 16S sequences from *M. costalis* and then extended using an iterative *de novo* map procedure. The final assembly was a contiguous sequence of 15,487 bp, which contained all standard mitochondrial coding regions and the putative A+T rich region. The gene configuration of the *M. costalis* mitogenome is similar to that of other odonates, comprising 13 protein-coding genes, large and small rRNA genes, and 22 tRNA genes. We found three intergenic spacers that are also present in all available whole odonate mitogenomes. Base composition of the M. costalis mitogenome is 40% (A), 20% (C), 14% (G) and 26% (T), with a high A+T content (66%). The characterisation the complete mitochondrial genome of *M. costalis* adds to the growing list of mitogenomes currently available for odonates, and will help to improve primer design for future population genetic studies. A phylogenetic analysis including the complete mitochondrial genome sequences of odonates support the inclusion of *Epiophlebia superstes* within the suborder Zygoptera.

Keywords: mitogenome, dragonfly, de novo map, phylogeny Πιμουτικό μ

2	34	Introduction				
3 4	35	Mitochondrial sequence data continue to provide with the majority of genetic markers used in				
5	36	phylogenetic studies of odonate species (Ballare & Ware 2011), despite the problems that may arise				
6 7	37	from the use of mitochondrial markers in instances of introgression or hybridization (e.g. Hayashi et				
8 9	38	al 2005). This widespread use of mitochondrial markers for such studies is mainly due to the				
10	39	limited number of alternative nuclear genes that could be amplified with nearly-universal primers				
11 12	40	across different odonate species (but see Ferreira et al 2014). Having full mitochondrial genomes				
13 14	41	available provides the opportunity of improving primer design, and also to increase the number of				
15	42	target genes used in phyologenetic inference, therefore providing more robust phylogenetic				
16 17	43	reconstructions (e.g. Lin et al 2010). Also, mitochondrial genomes may allow to answer diverse				
18 19	44	comparative and evolutionary genomics questions in insects, such as the evolution of genome size				
20	45	or the study of gene rearrangements (Cameron 2014), or to analyze the evoutionary processes that				
21 22	46	underly the evolution of synonimous and non-synonimous codon usage (e.g. Kumar et al 2012).				
23 24	47	In the last couple of years, there has been a notable increase in the number of mitochondrial genome				
24 25	48	data available for odonates; and currently the complete (or nearly complete) mitochondrial genomes				
26 27	49	of 15 odonates species belonging to nine families are available (Table 1). However, and despite it				
28	50	covers nearly a third of the families currently described within the order, this constitutes yet a small				
29 30 31 32	51	fraction of the extant odonate diversity (~6,000 species in 30 families; Dijkstra et al. 2013).				
	52	Here, we report the complete mitochondrial genome of the damselfly Mnais costalis (Zygoptera,				
33 34	53	Calopterygidae) from Japan, obtained by next generation sequencing. Members of the				
35	54	Calopterygidae, commonly known as broad-winged damselflies, demoiselles or jewelwings; have				
36 37	55	metallic-coloured bodies and some species also have conspicuously pigmented wings. They have				
38 30	56	been used as models for research into reproductive behaviour, interspecific interactions, character				
40	57	displacement and sperm competition (Córdoba-Aguilar 2008), with Mnais damselflies being				
41 42	58	particularly important as they are one of the few species that have a male-linked colour				
43 44	59	polymorphism that is associated with behavioural phenotype (Plaistow & Tsubaki 2000, Tsubaki et				
44 45	60	al 1997, Tsubaki & Okuyama in press). Finally, we reconstruct the phylogenetic relationships				
46 47	61	among odonates, based on the complete mitochondrial genomes currently available.				
48 40	62					
49 50	63	Material and methods				
51 52	64					
53	65	Sample collection, DNA extraction and sequencing				
54 55	66	Five adult <i>Mnais costalis</i> males (2 orange and 3 clear winged) were collected at Togichi Prefecture				
56 57	67	(36°42' N, 140°13' E) and used to extract genomic DNA from the thoracic muscle. For DNA				
58 50						
60						

extraction, we used the Qiagen Genomic-Tip 500/G, following manufacturer's instructions. Samples were pooled for sequencing (pool 1 - clear and pool 2 - orange) on a HiSeq 2000 (Illumina), generating 2x100bp paired end reads (approximate fragment size 550-750bp), with chemistry v.3, at the Centre for Genomic Research (www.liverpool.ac.uk/genomic-research/). Information on the number of reads obtained and data quality control is provided in the Supplementary Information. *Obtaining and anotating the mitochondrial genome* To obtain the mitochondrial genome sequence, we used the iterative fine-tuning option within the map to reference as implemented in Geneious v.9.0.5 (www.geneious.com). This allows read mapping to extend past the ends of the reference sequence on each iteration. COI and 16S sequences of *Mnais costalis* (GenBank AB708347 and AF170952, respectively) were used as seeds against which the Illumina reads from both pools were mapped in a first step, and the obtained contigs were used to seed subsequent mapping, with the procedure repeated for a total of 425

- 82 iterations to recover the entire mitogenome.
- 83 Mitochondrial genome annotation was done in Geneious v.9.0.5. First, open reading frames
- 84 (ORFs) were identified, and the putative ORFs were then compared with the odonate mitogenomes
- 85 listed above. Gene identity was confirmed by BLAST search (Altschul et al. 1990) against
- 86 Genbank's nr database (www.ncbi.nih.gov; date accessed 17 February 2016). Transfer RNA genes
- 87 were identified using ARWEN (Lasslett & Canbäck, 2008; http://mbio-
- 88 serv2.mbioekol.lu.se/ARWEN/).

90 Phylogenetic analyses

- 91 Sequences of 13 protein-coding genes (PCGs), two rRNA genes and 22 tRNA genes from the
- 92 currently available odonate mitogenomes (Table 1), were used to perform a phylogenetic analysis.
 - 93 Sequences from the same genes were extracted from the mitochondrial genome available for
 - 94 Ephemera orientalis (Ephemeroptera, GenBank Accession EU591678; Lee et al 2009),
 - *Parafronurus youi* (Ephemeroptera, GenBank Accession EU349015; Zhang et al 2008) and
- 96 Pteronarcys princeps (Plecoptera, GenBank Accession NC_006133; Stewart & Beckenbach 2006);
- 97 to be used as outgroups in the phylogenetic analyses.
- PCGs were aligned using Muscle (Edgar 2004) as implemented in Geneious v.7.0.1
- 99 (www.geneious.com). For the aligment of the 16S and the 12s sequences, we used Mafft v.7
- 100 (Katoh & Standley 2013; http://mafft.cbrc.jp/alignment/server/index.html), with the the option Q-
- 101 INS-I, which considers the secondary structure information of the RNA. Transfer RNA sequences

102	were aligned using the software LocARNA (Will et al 2007, Smith et al 2010, Will et al 2012;
103	http://rna.informatik.uni-freiburg.de/LocARNA/Input.jsp), which aligns tRNA sequences based on
104	their sequence and structure features. Regions with ambiguities, as well as variable regions within
105	each alignment, were recognized and excluded using Gblocks (Castresana 2000, Talavera &
106	Castresana 2007; http://molevol.cmima.csic.es/castresana/Gblocks_server.html), using the relaxed
107	parameters (<i>i.e.</i> allow smaller final blocks, allow gap positions within the final blocks and allow
108	less strict flanking positions). Alignments of individual genes were concatenated as two datasets:
109	(1) PCG; comprising the 13 PCGs with 11,707 nucleotides and (2) PCG+RNA: 13 PCGs, two
110	rRNAs and 22 tRNAs; with 15,110 nucleotides. Both datasets were used in phylogenetic analyses.
111	Phylogenetic relationships were reconstructed using Maximum Likelihood (ML). Heuristic
112	searches were carried out using the Randomized Axelerated Maximum Likelihood algorithms
113	implemented in RaxML-HPC2 (Stamatakis 2006; Stamatakis et al. 2008), through the CIPRES web
114	portal (http://www.phylo.org). The analysis was run under de GTRCAT model, and bootstrap
115	support values were generated with a rapid bootstrapping algorithm under the auto Majority Rule
116	Criterion (autoMRE; Stamatakis et al., 2008).
117	
118	Results and Discussion
119	Here, we provide the third complete mitochondrial genome for a member of the family
120	Calopterygidae, and further confirm the utility of next-generation sequencing to obtain whole
121	odonate mitogenomes (see also Lorenzo-Carballa et al. 2014). A total of 2,813,625 short-sequence
122	reads were mapped to obtain a single contig 15,487 bp long. The mean coverage for the contig was
123	~9,000 reads.
124	The size of the complete mitochondrial DNA genome of M. costalis (GenBank accession number
125	KU871065) is within the size range of the other 14 complete odonate mitochondrial genomes
126	(15,056–16,685 bp). It comprises the standard metazoan panel of 13 protein-coding genes, 2 rRNA
127	genes (12S and 16S rRNA) and 22 tRNA genes (Figure1, Table 1). Protein-coding genes employ
128	the typical invertebrate mitochondrial start codons: cox1, cox2, cox3, atp6, nad4, nad4L, cob and
129	nad1 use ATG; nad2, nad3, nad6 and atp8 use ATC, and nad5 uses ATT. Eight protein-coding
130	genes have the standard stop codons TAA (nad1, nad2, nad6, nad4L, atp6 and atp8) and TAG
131	(nad3 and cob); cox1, cox2, cox3 and nad5 have an incomplete stop codon of a single T, while nad4
132	has an incomplete TA stop codon (Table 1). Base frequency of the whole mtDNA genome is
133	A=40%, T=26.2%, C=19.5% and G=14.2%4%, with an overall A+T content of 66.2% that is within
134	the range of other odonate mitogenomes (A+T=64.1-73.1%), including the calopterygids Vestalis

melania (64%) and Atrocalopteryx atrata (70%). All protein-coding genes have a high AT content,

which varies between 69.2% (nad4L) and 58.5% (cox3) AT content. All 22 tRNA-coding sequences of *M. costalis* can be folded into the characteristic clover-leaf secondary structure, and they range in size from 62 bp in *trnC* to 76 bp in *trnY* (Supplemental Information Figure 1; Table 1). The mtDNA genome of *M. costalis* is identical in gene number and gene arrangement to that of the other fourteen complete odonate mitogenomes. Sixteen gene junctions in the mtDNA of M. costalis have short overlaps, with the largest junction having 13 nucleotides overlap (between atp8 and *atp6*). There are three non-coding intergenic spacers (s1-s3), which are characteristic of other odonate mitogenomes. The s5 spacer located between *trnL* and *nad1* in anisopterans (dragonflies) is absent in *M. costalis* and all other zygopteran (damselflies) mitogenomes, further supporting the suggestion that this trait is a synapomorphy for the Zygoptera and Anisoptera (Lin et al., 2010, Lorenzo-Carballa et al 2014). Only three SNPs (three Rs in positions 5.085 [cox3], 9.636 and 9.638 [nad4L]) and two ambiguities (Ns) in positions 8,901 [nad4] and 14,732 [A+T rich region] were found in the sequence, which indicates that some variability is expected between different individuals/morphs of *M. costalis*. Thus, having the complete mitochondrial genome available will help to improve primer design for future population genetic studies on this interesting species. Our ML analyses using both datasets (PCG and PCG+RNA) recovered the same topology, and support the inclusion of *Epiophlebia superstes* within the suborder Zygoptera, although this relationship is supported with a higher bootstrap value by the analysis of the PCG dataset (Figure 2). The inclusion of *E. superstes* within the Zygoptera would be in agreement with the finding that the mitochondrial genome of this species also lacks the intergenic spacer s5 between *nad1* and *trnL2*, and thus the mitogenomic organization of this relict dragonfly would be more similar to that of the Zygoptera (Wang et al 2015). A surprising result of our analyses is that the monophyly of the suborder Anisoptera is not well supported by any of the datasets (Figure 2), which could be due to the fact that available data for two anisopteran species (Orthetrum triangulare melania and Cordulia aenea) are incomplete. Obtaining more complete mitochondrial genomes for other representatives of the Anisoptera in the future could help to improve the resolution of the analyses. Also, combining whole mitogenome data with nuclear markers could help not only to obtain more robust phylogenies, but also to clarify the position of the Epiophlebidae within the order.

169 170

171

Acknowledgements

1

2

MOLC is funded by the EU (Marie Curie IEF PIEF-GA-2013-626504). MOLC thanks Wiebke

Feindt and Kai Kamm for fruitful discussions and suggestions on the analyses. Two anonymous

reviewers gave useful comments on an early version of the manuscript.

3	
1	
5	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
<u>ν</u>	
40	
49	
50	
51	
52	
53	
54	
54	
50	
56	
57	
58	
59	
60	

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment search tool.
 Journal of Molecular Biology, 215: 403–410. doi:10.1006/jmbi.1990.9999
- 175 Ballare E. & Ware JL. (2011) Dragons fly, biologists classify: an overview of molecular odonate
- studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata)
- behavior. *International Journal of Odonatology* 14: 137–147. doi:
- 178 10.1080/13887890.2011.579538
- Cameron SL. (2014) Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny.
 Annual Review of Entomology, 59: 95-117. doi:10.1146/annurev-ento-011613-162007

181 Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in

182 phylogenetic analysis. *Molecular Biology and Evolution*, 17: 540-552. doi:

- 183 10.1093/oxfordjournals.molbev.a026334
- Chen MY, Chaw SM, Wang JF, Villanueva RJT, Nuñeza OM, Lin CP. (2015) Mitochondrial
 genome of a flashwing demoiselle *Vestalis melania* from the Philippine Archipelago. *Mitochondrial DNA*, 26: 720-721. doi:10.3109/19401736.2013.845757

187 Córdoba-Aguilar A. (Editor). (2008) Dragonflies and Damselflies. Model Organisms for
 188 Ecological and Evolutionary Research. Oxford, University Press, Oxford. ISBN978-0-19 189 923069-3.

- 190 Dijkstra K-DB, Bechly G, Bybee SM, Dow RA, Dumont HJ, Fleck G, Garrison RW, Hämäläinen
- 191 M, Kalkman VJ, Karube H, May ML, Orr AG, Paulson D, Rehn AC, Theischinger G, Trueman
- 192 JWH, van Tol J, von Ellenrieder N, Ware J. The classification and diversity of dragonflies and
- 193 damselflies (Odonata). In: Zhang, Z-Q (Editor). Animal biodiversity: An outline of higher-level
- 194 classification and survey of taxonomic richness. *Zootaxa*, 3730: 36-45. doi:
- 195 http://dx.doi.org/10.11646/zootaxa.3703.1.9
- Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
 Nucleic Acids Research, 32: 1792-1797. doi: 10.1093/nar/gkh340
- 198 Ferreira S, Lorenzo-Carballa MO, Torres-Cambas Y, Cordero-Rivera A, Thompson DJ, Watts PC.
- 199 (2014) New EPIC nuclear DNA sequence markers to improve the resolution of phylogeographic
- studies of coenagrionids and other odonates. International Journal of Odonatology, 17: 135-
 - 201 147. doi: http://dx.doi.org/10.1080/13887890.2014.950698

Page 9 of 17

1	202	Hayashi F, Dobata S Futahasi R. (2005) Disturbed population genetics: suspected introgressive
3	203	hybridization between two <i>Mnais</i> damselfly species (Odonata). Zoological Science, 22: 869-
4 5	204	881 doi: http://dx doi org/10 2108/zsi 22 869
6	-01	
7 8	205	Katoh K & Standley DM. (2013) MAFFT Multiple Sequence Alignment Software Version 7:
9	206	Improvements in Performance and Usability. Molecular Biology and Evolution, 30: 772-780.
10 11	207	doi: 10.1093/molbev/mst010
12		
13 14	208	Kumar CS, Nair RR, Sivaramarkrishnan KG, Ganesh D, Janarthanan S, Arunachlam M &
15	209	Sivarubam T. (2012) Influence of certain forces of evolution of synonimous codon usage bias in
16 17	210	certain species of three basal orders of aquatic insects. Mitochondrial DNA, 23: 447-460. doi:
18	211	10.3109/19401736.2012.710203
19 20		
20	212	Laslett, D & Canbäck B. (2008) ARWEN, a program to detect tRNA genes in metazoan
22	213	mitochondrial nucleotide sequences. Bioinformatics, 24: 172-175. doi:
23 24	214	10.1093/bioinformatics/btm573
25 26		
20 27	215	Lee EM, Hong MY, Kim MI, Kim MJ, Park HC, Kim KY, Lee IH, Bae CH, Jin BR, Kim I. (2009)
28	216	The complete mitogenome sequences of the palaeopteran insects <i>Ephemera orientalis</i>
29 30	217	(Ephemeroptera: Ephemeridae) and Davidius lunatus (Odonata: Gomphidae). Genome, 52:810-
31 32	218	17. doi: 10.1139/g09-055
33	210	Lin CP, Chan MV, Huang IP, (2010). The complete mitachandrial genome and phylogenomies of a
34 35	219	Lin CF, Chen MT, Huang JF. (2010) The complete introchondrial genome and phylogenomics of a
36	220	damselfly, <i>Euphaea formosa</i> supports a basal Odonata within the Pterygota. <i>Gene</i> , 468:20–9.
37	221	doi: 10.1016/j.gene.2010.08.001
30 39	222	Lorenzo-Carballa MO, Thompson DI, Cordero-Rivera A, Watts PC, (2013) Next generation
40	222	sequencing yields the complete mitochendrial geneme of the segree blue tailed demosfly
41	223	sequencing yields the complete infloction and genome of the scarce of the taned damserry,
43	224	Ischnura pumilio. Mitochondrial DNA, 25: 247-248. doi: 10.3109/19401736.2013.796518
44 45	225	Plaistow S & Tsubaki Y. (2000) A selective trade-off for territoriality and non-territoriality in the
46	226	polymorphic damselfly Mnais costalis. Proceedings of the Royal Society of London Series B-
47 48 49	227	Biological Sciences, 267:969-975. doi: 10.1098/rspb.2000.1098
50 51	228	Simon S & Hadrys H. (2013) A comparative analysis of complete mitochondrial genomes among
52	229	Hexapoda. Molecular Phylogenetics and Evolution, 69: 393-403. doi:
53 54	230	10.1016/J.Ympev.2013.03.033
55		1
56 57	231	Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
58		
59		

thousands of taxa and mixed models. Bioinformatics, 22: 2688-2690. doi: http://dx.doi.org/10.1093/bioinformatics/btl446 Stamatakis A, Hoover P, Rougemont J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57: 758-771. doi: http://dx.doi.org/10.1080/10635150802429642 Stewart JB & Beckenbach AT. (2006) Insect mitochondrial genomics 2: the complete mitochondrial genome sequence of a giant stonefly, *Pteronarcys princeps*, asymmetric directional mutation bias, and conserved plecopteran A+T-region elements. Genome, 49: 815-824. doi: 815-824, 10.1139/g06-037 Talavera G and Castresana J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56: 564-577. doi: 10.1080/10635150701472164 Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, Zhou X. (2014) Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42: e166. doi: 10.1093/nar/gku917 Tsubaki Y, Hooper R Siva-Jothy M. (1997) Differences in adult and reproductive lifespan in the two male forms of *Mnais pruinosa costalis* Selys (Odonata : Calopterygidae). Researches on Population Ecology, 39:149-155. doi: 10.1007/BF02765260 Tsubaki Y, Okuyama H. (in press) Adaptive loss of color polymorphism and character displacement in sympatryic *Mnais* damselflies. *Evolutionary Eology*. doi: 10.1007/s10682-015-9778-3. Wang JF, Chen MY, Chaw SM, Morii Y, Yoshimura M., Sota T, Lin CP. (2015) Complete mitochondrial genome of an enigmatic dragonfly, Epiophlebia superstes (Odonata, Epiophlebidae). Mitochondrial DNA, 26: 718-719. doi: 10.3109/19401736.2013.845756 Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. (2007) Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PloS Computational Biology, 3 no 4: e65. doi: 10.1371/journal.pcbi.0030065 Smith C, Heyne S, Richter AS, Will S, Backofen R. (2010) Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA. Nucleic Acids Research, 38: Suppl pp W373-377. doi: 10.1093/nar/gkq316 Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. (2012) LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA, 18: 900-914. doi:

10.1261/rna.029041.111

Yamauchi MM, Miya MU, Nishida M. (2004) Use of a PCR-based approach for sequencing whole mitochondrial genomes insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Molecular Biology, 13: 435-442. doi:

10.1111/j.0962-1075.2004.00505.x

Leonpie. Joint of the complete in Laboratoria of the phylogenetic parameters Joint of Joint of Joint of The Completers Joint of the Completers of the Completers Joint of The Yu P, Cheng X, Ma Y, Yu D, Zhang J. (2014) The complete mitochondrial genome of *Brachythemis* contaminata (Odonata: Libellulidae). Mitochondrial DNA, Dec 10 (Early Online): 1-2. doi:10.3109/19401736.2014.984176

Zhang J, Zhou C, Gai Y, Song D, Zhou K. (2008) The complete mitochondrial genome of

Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera.

Gene, 424: 18-24. doi: 10.1G016/j.gene.2008.07.037

Figure 1: Genetic map of the mitochondrial genome of *Mnais costalis*, showing the location of the protein coding genes (green), transfer RNAs (pink), ribosomal RNAs (red), the intergenic spacers s1-s3 and the A+T rich region (grey). Picture of *M. costalis* by Stewart J. Plaistow.

- **Figure 2:** Maximum likelihood (ML) tree obtained when analyzing nucleotides from protein coding
- 279 genes, 16S and 12S, and tRNAs; after ambiguous regions were excluded from all the genes. Values
- above branches represent boopstrap support values for the analyses with each dataset (PCG+RNA /
- PCG).

 Table 1. Mitochondrial genomes currently available for Odonata.

Family	Species	Mitogenome size (bp)	GenBank Accession	Reference
Libellulidae	Orthetrum triangulare melania	14,033*	AB126005	Yamauchi et al. 2004
	Hydrobasileus croceus	15,088	KM244659	Tang et al. 2014
	Brachythemis contaminata	15,056	KM658172	Yu et al. 2015
Corduliidae	Cordulia aenea	14,448*	JX963627	Simon & Hadrys 2013
Gomphidae	Davidius lunatus	15,913	EU591677	Lee et al. 2009
	Ictinogomphus sp.	15,393	KM244673	Tang et al 2014
Epiophlebidae	Epiophlebia superstes	15,435	JX050223	Wang et al. 2015
Platycnemidae	Platycnemis foliacea	15,382	NC027180	unpublished
Coenagrionidae	Ischnura pumilio	15,250	KC878732	Lorenzo-Carballa et al. 2014
Euphaeidae	Euphaea formosa	15,700	HM126547	Lin et al. 2010
	E. yayeyamana	15,709	KF718293	unpublished
	E. ornata	15,863	KF718295	unpublished
	E. decorata	15,861	KF718294	unpublished
Pseudolestidae	Pseudolestes mirabilis	15,122	FJ606784	unpublished
Calopterygidae	Atrocalopteryx atrata	15,424	KP233805	unpublished
	Vestalis melania	16,685	JX050224	Chen et al. 2015
muogenome sequ	ence is incomplete			
	Family Libellulidae Gorduliidae Gorduliidae Biophlebidae Platyenemidae Coenagrionidae Euphaeidae Calopterygidae mitogenome seque	FamilySpeciesLibellulidaeOrthetrum triangulare melaniaHydrobasileus croceusBrachythemis contaminataCorduliidaeOrdulia aeneaCorduliidaeDavidius lunatusGomphidaeDavidius lunatusEpiophlebidaePiophlebia superstesPlatycnemidaeJechnura pumiloCoenagrionidaeEconataEuphaeidaeE. ornataEseudolestidaeAseudolestes mirabilisCalopterygidaeAseudolestes mirabilisCalopterygidaeKistais melania	FamilySpeciesMitogenome size(bp)LibellulidaeOrthetrum triangulare melania14,033*LibellulidaeHydrobasileus croceus15,088Brachythemis contaminata15,056CorduliaOravidius acenea14,448*GomphidaeDavidius lunatus15,913EpiophlebidaeEpiophlebia superstes15,332PlatycnemidaePlatycnemis foliacea15,700EuphaeidaeExphaea formosa15,700EyendolestidaeForonata15,863PseudolestidaeSecorata15,863PseudolestidaeAtrocalopteryx atrata15,424CalopterygidaeAtrocalopteryx atrata16,685mitogenome sequere is incompleteSecorataSecorata	FamilySpeciesMitogenome size (bp)GenBank AccessionLibellulidaeOrthetrum triangulare melanta14,033*AB126005Hydrobasileus croceus15,088KM244659Brachythemis contaminata15,056KM658172CorduliidaeOrdulia aenea14,448*JX963627GomphidaeDavidius lunatus15,913EU591677Etinogomphus sp.15,393KM244673Epiophlebidae <i>Epiophlebia superstes</i> 15,435JX050223PlatyenemidaePlatyenemis foliacea15,700KK718293Euphaeidae <i>Euphaea formosa</i> 15,709KF718293Euphaeidae <i>Pseudolestes mirabilis</i> 15,122Fló06784CalopterygidaeAtrocalopteryx atrata15,424KP233805Platyeneme seu-trie is incompleteStatis melaniaStatis melaniaStatis melania

Table 2. Organisation of the mitochondrial genome of the damselfly Mnais costalis. Incomplete
stop codons are indicated with parentheses. s1-s3 are intergenic spacers.

Feature	Position	Length	A+T (%)	Strand	Start/Anti codon	Stop codon
trnI	1-72	72	65.3	+	GAT	-
trnQ	68-137	70	68.5	-	TTG	-
trnM	138-206	69	66.7	+	CAT	-
nad2	207-1196	990	67.9	+	ATC	TAA
trnW	1194-1263	70	72.9	+	TCA	-
trnC	1255-1316	62	74.2	-	GCA	-
trnY	1317-1392	76	72.4	-	GTA	-
s1	1393-1417	25	68	n.a.	-	-
cox1	1418-2951	1534	60.4	+	ATG	T(aa)
trnL2	2951-3019	69	65.2	+	TAA	-
cox2	3019-3706	688	63.2	+	ATG	T(aa)
trnK	3706-3779	74	64.9	+	CTT	-
trnD	3778-3842	65	78.5	+	GTC	-
atp8	3843-4001	159	68.6	+	ATC	TAA
atp6	3989-4672	684	64.6	+	ATG	TAA
cox3	4672-5458	787	58.5	+	ATG	T(aa)
trnG	5458-5522	65	76.9	+	TCC	-
nad3	5522-5875	354	67.1	+	ATC	TAG
trnA	5874-5938	65	75.4	+	TGC	-
trnR	5939-6005	67	61.2	+	TCG	-
trnN	6003-6069	67	73.1	+	GTT	-
trnS1	6070-6138	69	56.5	+	GCT	-
trnE	6141-6205	65	81.5	+	TTC	-
trnF	6203-6268	66	63.6	+	GAA	-
s2	6269-6293	25	80	n.a.	-	-
nad5	6294-7994	1701	65.1	-	ATT	T(aa)
trnH	7995-8058	64	68.7	-	GTG	-
nad4	8059-9398	1339	67.9	-	ATG	TA(a)
nad4L	9392-9685	294	69.2	-	ATG	TAA
trnT	9687-9755	69	65.2	+	TGT	-
trnP	9759-9827	69	68.1	-	TGG	-
nad6	9829-10323	495	62.8	+	ATC	TAA
cob	10323-11451	1129	61	+	ATG	TAG
trnS2	11455-11519	65	58.5	+	TGA	-
s3	11520-11536	17	88.2	n.a.	-	-
nad1	11537-12487	951	66.1	-	ATG	TAA
trnL1	12489-12553	65	69.2	-	TAG	-
l-rRNA	12554-13844	1291	71	-	-	-
trnV	13845-13916	72	61.1	-	TAC	-
s-rRNA	13917-14653	737	69.2	-	-	-
A+T rich region	14654-15487	834	79.7	n.a.	-	-

