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1  |  INTRODUC TION

Human-induced environmental change is transforming the famil-
iar environments of evolutionary history at an unprecedented 
rate (IPCC,  2022). Vulnerable populations must adapt via phe-
notypic plasticity (West-Eberhard, 2003) or evolution by natural 

selection (Gomulkiewicz & Holt,  1995) to avoid decline and ex-
tinction (Hoffmann & Sgrò, 2011; Merilä & Hendry, 2014). Vital 
to a population's potential to undergo such rapid adaptation (its 
evolvability) is the presence of sufficient heritable phenotypic 
variation available for selection (Feiner et  al.,  2021; Payne & 
Wagner, 2019).
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Abstract
Anthropogenic change exposes populations to environments that have been rare or en-
tirely absent from their evolutionary past. Such novel environments are hypothesized 
to release cryptic genetic variation, a hidden store of variance that can fuel evolution. 
However, support for this hypothesis is mixed. One possible reason is a lack of clar-
ity in what is meant by ‘novel environment’, an umbrella term encompassing conditions 
with potentially contrasting effects on the exposure or concealment of cryptic variation. 
Here, we use a meta-analysis approach to investigate changes in the total genetic vari-
ance of multivariate traits in ancestral versus novel environments. To determine whether 
the definition of a novel environment could explain the mixed support for a release of 
cryptic genetic variation, we compared absolute novel environments, those not repre-
sented in a population's evolutionary past, to extreme novel environments, those involv-
ing frequency or magnitude changes to environments present in a population's ancestry. 
Despite sufficient statistical power, we detected no broad-scale pattern of increased 
genetic variance in novel environments, and finding the type of novel environment did 
not explain any significant variation in effect sizes. When effect sizes were partitioned 
by experimental design, we found increased genetic variation in studies based on broad-
sense measures of variance, and decreased variation in narrow-sense studies, in support 
of previous research. Therefore, the source of genetic variance, not the definition of a 
novel environment, was key to understanding environment-dependant genetic varia-
tion, highlighting non-additive genetic variance as an important component of cryptic 
genetic variation and avenue for future research.
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Rather than a static feature of genotypes, accumulating evidence 
suggests that the contemporary environment can influence with-
in-generation expression of genetic variance (D'Aguillo et al., 2022; 
Hoffmann & Merilä, 1999; Stearns et al., 1991). This environment-de-
pendant variance arises when genotypes respond in different ways 
to an environmental change, known as a genotype-by-environment 
interaction (G × E; Saltz et al., 2018; Via & Lande, 1985, 1987). G × E 
is mediated through the developmental organization and capacity 
for phenotypic plasticity of genotypes, which are in turn shaped 
by a population's evolutionary history (Noble et al., 2019; Parsons 
et al., 2020; Radersma et al., 2020; Uller et al., 2018). G × E can de-
crease genetic variation in some environments and increase it in 
others, altering the subsequent pace and progress of evolutionary 
change (Via & Lande, 1985, 1987). In environments frequently en-
countered, selection has had sufficient evolutionary time to fine-
tune the plastic responses of individuals in a population (Parsons 
et  al.,  2020). Consequently, there is less variation in how geno-
types respond to the environment, reducing G × E and the genetic 
variance available to selection (Arnold & Wade,  1984; Falconer & 
Mackay, 1996; Oostra et al., 2018). In contrast, novel environments 
that were rare or absent from a population's evolutionary history 
are hypothesized to increase G × E and the genetic variance available 
to selection; with genotypes exhibiting unrefined and more vari-
able responses to the environment (Charmantier & Garant,  2005; 
Rutherford & Lindquist,  1998; Schlichting,  2008; Snell-Rood 
et  al.,  2018) and pre-existing differences amplified (D'Aguillo 
et al., 2019, 2022).

This increase in variation is known as the release of cryptic ge-
netic variation (CGV); genetic variation is only expressed under atyp-
ical conditions that are rare or absent in the evolutionary history of 
a population. CGV has been presented as an important means by 
which rapid adaptation can occur (Gibson & Dworkin, 2004; Ledón-
Rettig et al., 2014; Paaby & Rockman, 2014; Rouzic & Carlborg, 2008; 
Schlichting, 2008; Waddington, 1953), as the environment-depen-
dant nature of this hidden variation limits the action of natural se-
lection in familiar environmental contexts, allowing mutations to 
accumulate unchecked aside from genetic drift. Consequently, “a 
store of genetic variability” (Dobzhansky,  1941) resides, with the 
potential to increase the genetic variation available to selection 
should a novel environment arise (McGuigan & Sgrò, 2009; Zheng 
et al., 2019).

Despite empirical support from individual studies, evidence for a 
broad-scale pattern of increased genetic variance in novel environ-
ments has proved elusive. The release of CGV has been reported by 
individual studies in diverse taxa and environments, including modi-
fications to resource limitation (Kause & Morin, 2001), temperature 
(Rutherford & Lindquist, 1998), predation (Auld, 2010; Dingemanse 
et  al.,  2020), photoperiod (Johansson et  al.,  2021), density (Brock 
et al., 2010; Collins et al., 1999) and salinity (McGuigan et al., 2011). 
The evidence overall, however, has been equivocal. Whereas some 
prior meta-analyses reported that environmental novelty was as-
sociated with increased genetic variation (Wood & Brodie,  2016), 
others showed no consistent effect (Rowiński & Rogell, 2017; Wood 

& Brodie, 2015), or that the effect was dependent on experimental 
methodology (Noble et al., 2019). Interestingly, Noble et al.  (2019) 
found that genetic variation decreased in novel environments in 
studies using a half-sibling breeding design but increased in studies 
using a full-sibling breeding design.

A possible reason for the present ambiguity may lie in the use 
of “author-designated novelty” to screen articles, as highlighted by 
meta-analyses themselves (Murren et al., 2014; Noble et al., 2019; 
Wood & Brodie, 2015, 2016). This metric is based on whether pri-
mary authors defined experimental treatments as novel, allowing for 
a broad interpretation of novelty reflecting the lack of a standard-
ized definition. This contrasts with concepts such as environmental 
stress, which have established empirical frameworks (Hoffmann & 
Parsons, 1993). In the context of CGV, examples span novel envi-
ronments derived from evolutionarily unprecedented perturba-
tions, such as a new environmental toxin (Diamond & Martin, 2016; 
Gabor et  al.,  2021), to those representing a range extension of 
ancestral conditions, known as extreme environments (Chevin & 
Hoffmann,  2017). Such environments may be derived from natu-
ral, direct anthropogenic or indirect anthropogenic factors (Catullo 
et al., 2019; Gabor et al., 2021; Merilä & Hendry, 2014). This absence 
of like-for-like comparison presents a barrier to evidence synthesis; 
overlooking the potential for different kinds of novel environments 
to have different consequences for the release of CGV (Diamond & 
Martin, 2016).

Theory suggests that novelty emerging from a frequency or 
magnitude change in environment is more likely to elicit an adaptive 
plastic response, and thus reveal less CGV than novelty resulting 
from an absolute change in environment. This is due to sufficient 
time elapsing for natural selection to shape an adaptive phenotype 
(de Visser et al., 2003; Parsons et al., 2020; Queitsch et al., 2002; 
Rohner et al., 2013). As a result, the developmental perturbations 
induced by an extreme environment may not be sufficient to disrupt 
evolved canalization mechanisms (Suzuki et al., 2020), thus revealing 
less CGV compared to novelty arising from an unprecedented condi-
tion (Diamond & Martin, 2016; Paaby & Gibson, 2016).

Some solutions to the objective classification of novelty have 
been presented, such as defining environments by their fitness 
consequences (McGuigan & Sgrò, 2009) or incorporating temporal 
rarity (the absence of an environmental condition over a given num-
ber of generations; Noble et al., 2019). Frameworks have also been 
devised for novelty at the ecosystem scale (Heger et al., 2019), and 
specific sources of environmental change (“novel climates”; Bitter 
et al., 2021). However, such a structure has not been applied to the 
study of CGV, regarding the presence of an environment in a pop-
ulation's evolutionary history. Additionally, the timescale (whether 
intra- or inter-generational) over which evidence of increased addi-
tive genetic variation is investigated has not previously been con-
trolled for. This may present issues when examining CGV, as it is 
important to examine additive genetic variation within one gener-
ation of exposure to the novel environmental treatment to control 
for the subsequent action of natural selection upon that variation 
(McGuigan & Sgrò, 2009; Paaby & Rockman, 2014).
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    |  3RILEY et al.

To examine whether the definition of a novel environment af-
fects the ability to detect CGV, we conducted a meta-analysis to 
assess the intragenerational change in additive genetic variation in 
novel environments, categorizing environments as extreme versus 
absolute novel using defined criteria (Box 1). Studies estimating the 
volume of the genetic variance–covariance matrix (G-matrix) were 
collated and used to generate the standardized mean difference in 
total genetic variation (SDV) as the effect size, based on the meth-
ods by Noble et al. (2019). We asked two questions: (1) Does total 
additive genetic variation expressed by a multivariate phenotype in-
crease in novel environments compared to ancestral environments? 
(2) Does the type of novel environment, classified by the presence 

of an environmental condition in a population's ancestry, affect the 
magnitude or direction of this change in total genetic variation?

2  |  METHODS

2.1  |  Literature search

A systematic review of the literature was conducted to collate 
the findings of empirical studies that estimate a G-matrix for a 
population across a non-novel and novel environment(s) (Box  1; 
Figure  S1). The G-matrix summarizes the genetic variance and 

BOX 1 Criteria for identifying and classifying novel environments.

To be included in the meta-analysis, a study must have estimated quantitative genetic parameters in the form of a G-matrix for 
a population in at least two environments (Criterion 1). These environments must represent an ancestral (non-novel) and novel 
environment(s) (Criterion 2). To be considered novel, non-novel conditions that are representative of the populations evolutionary 
history must be clearly stated in the text of the article (either quantitatively or qualitatively) (Heger et al., 2019). When compared 
to this ancestral environment, the novel experimental treatment(s) must represent an absolute, frequency or magnitude deviation 
from this ancestral environment; the environment must not have been present in its current form or range during the populations 
known evolutionary history. For this reason, the presence, absence, frequency or magnitude of the novel environmental condition 
in the ancestral environment must also be stated (again either quantitatively or qualitatively), to allow direct comparison. The novel 
environment was considered independently of whether the treatment also imposed environmental stress, for instance, a novel envi-
ronment could be benign or stressful.

To recognize different sources of environmental novelty, novel environmental treatments were then sub-categorized as either 
absolute or extreme novel environments (Criterion 3). Environments were classified as absolute when the treatment involved an 
alteration to the functional type or presence/absence of an environmental condition that was not represented in the population's 
ancestral environment. Absolute novel environments typically show discontinuous variation, with examples including the pres-
ence of a predator, environmental pollutant or food type not previously encountered by the population under investigation (e.g. 
Dutilleul et al., 2015). Environments were classed as extreme novel environments when the treatment constituted an alteration to 
the frequency or magnitude of an environmental condition that is represented in the population's ancestral environment. Extreme 
novel environments typically show continuous variation, and examples include a change in temperature or light regime (Johansson 
et al., 2021), or a change in quantity of an ancestral food type (e.g. Kause & Morin, 2001).

Our study used an additional criterion, in limiting studies to those measuring traits included in the G-matrix within one generation 
of exposure to the novel environment. This is specific to our investigation of CGV and not applicable to the usage of novel environ-
ment terminology broadly. Nonetheless, this conceptual framework is intended as both an illustration of our meta-analytic inclusion 
criteria and as a reference to inform future research into novel environments.
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4  |    RILEY et al.

covariance between multiple phenotypic traits (Arnold et al., 2008; 
Lande, 1979; Steppan et al., 2002; Wood & Brodie, 2015), allow-
ing environmentally induced changes in genetic variation to be 
examined across the integrated phenotype rather than univari-
ate traits (Plaistow & Collin, 2014; Robinson & Beckerman, 2013). 
To identify suitable studies, a literature search was performed on 
28/06/21 using the search string: (“G matri*” OR “genetic variance 
covariance matri*”) AND “environ*”, across two databases: Web 
of Science and Scopus, to ensure a comprehensive screening of 
the field. The search terminology was designed to retrieve records 
mentioning the G-matrix and “environments” more broadly rather 
than specifically “novel” environments in order to obtain poten-
tially eligible studies where environmental treatments had not 
been designated as novel by the primary authors. The search was 
performed on the title, abstract and keywords of records, span-
ning a timeframe from 1900 to 2021 (Web of Science) and 1788 
2021 (Scopus), and subject area was limited to: Environmental 
Sciences/Ecology, Evolutionary Biology, Zoology, Plant Sciences, 
Biodiversity and Conservation, and Developmental Biology. 
Further records were also extracted from a previous meta-analysis 
(Noble et al., 2019) that had synthesized evidence relating to the 
structure of G-matrices in novel environmental conditions from 
previous meta-analyses on this topic (Rowiński & Rogell,  2017; 
Wood & Brodie, 2015, 2016). The grey literature was not screened 
as the principal aims of this study concern how novel environments 
are defined and quantified in the primary literature. All records 
were screened and reports were retrieved by the primary author, 
with consultation from the secondary authors. This initial search 
retrieved 376 articles. Duplicates were removed via automation 
using the open-source software Rayyan (Ouzzani et al., 2016) and 
then manually screened by the primary author. The titles and ab-
stracts of included articles were first screened, and then full-text 
articles were retrieved and screened against the inclusion criteria 
detailed in Box 1.

2.2  |  Effect size

The standardized mean difference in total genetic variance (SDV) 
was used as the effect size for this study (Noble et al., 2019). SDV 
is a matrix-based effect size that estimates the change in total ad-
ditive genetic variation of the multivariate phenotype between 
ancestral and novel environments, weighted by precision (inverse 
standard error). Positive effect sizes indicate that total additive 
genetic variance was greater in the novel environment compared 
to the ancestral environment, and negative values indicate that 
total additive genetic variance was lower in the novel environ-
ment compared to the ancestral environment (Noble et al., 2019). 
To generate the effect size, numeric genetic variance–covariance 
matrices were extracted from included studies. In cases where 
the raw matrices were not available in either the main article, 
supplementary materials or associated digital repositories, au-
thors were contacted for relevant data. In addition to raw matrix 

data, additional meta-data concerning moderator variables (see 
Moderators), sample sizes (number of families, sires or clones) and 
associated trait means, standard deviations and standard errors 
were obtained. Studies were excluded if the G-matrix or meta-data 
in the relevant format could not be obtained. If partial datasets 
were available, incomplete traits (comprising rows and columns of 
the G-matrix) were also excluded. In cases where only correlation 
matrices were provided alongside genetic variance estimates, cor-
relation matrices were converted to covariance matrices using the 
“cor2cov” function in the R package “propagate” (Spiess,  2018). 
Many studies produced multiple effect sizes (number of effect 
sizes per study ranged from 1 to 4) due to comparing multiple 
novel environmental treatments, which was later controlled for in 
analyses (see Statistical analyses).

Traits included in G-matrices were assumed to follow a (multivar-
iate) normal distribution, thus studies reporting G-matrix estimates 
based on categorical data were excluded (e.g. Sakata et al., 2020). 
Raw matrix data were standardized by trait means to account for 
the disproportionate effect of large traits on effect sizes. To gen-
erate SDV estimates, genetic variance–covariance matrices (with 
non-positive eigenvalues converted to positive-definite values) and 
associated sample sizes were used in Monte Carlo simulations to 
generate an array of 5000 simulated datasets for each matrix ex-
tracted from included studies (Noble et  al.,  2019). Average effect 
size estimates and corresponding sampling error (standard devia-
tion) were then extracted from the simulated matrix distributions. 
Complete data, code and statistical analyses can be located in the 
associated public repository.

2.3  |  Moderators

To examine the effect of independent variables hypothesized to 
influence the change in SDV between novel and non-novel envi-
ronments, we collected meta-data on additional moderator vari-
ables. The number of moderator variables was restricted to five to 
ensure sufficient statistical power (van Houwelingen et al., 2002). 
The moderators examined were: (i) number of traits included in the 
G-matrix, (ii) study design, categorized into broad-sense or narrow-
sense measures of genetic variance, (iii) type of evolutionarily novel 
environment, categorized into absolute and extreme novel environ-
ments (Box 1), (iv) taxonomic group and (v) study year.

2.4  |  Statistical analyses

Meta-analysis of SDV was conducted in R v. 4.0.2 (R Core Team, 2020) 
using the package “Metafor” (Viechtbauer,  2010). Models were 
weighted by sampling variance and incorporated a study-level ran-
dom effect (study identifier) to account for non-independence be-
tween effect sizes, and an observation-level random effect (effect 
size identifier). Phylogenetic history was included in models in the 
form of a variance–covariance matrix generated from the Open Tree 
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of Life (OTL) database (Hinchliff et al., 2015) and R packages “rotl” 
(Michonneau et al., 2016) and “Ape” (Paradis et al., 2004) to account 
for potential non-independence between closely related species 
(Dougherty, 2021; Noble et al., 2017; Figure S2).

First, a multilevel random-effect model with species, phylogeny, 
study and observation included as random factors was used to gen-
erate the overall mean effect. This was considered significantly dif-
ferent from zero if the 95% confidence intervals did not overlap zero. 
The heterogeneity statistic I2 describes the percentage of total vari-
ation across effect sizes due to heterogeneity, rather than expected 
by chance (Higgins et al., 2003). Therefore, I2 was calculated across 
effect sizes as a measure of total heterogeneity, and then calculated 
for individual levels of the model to provide measures of heteroge-
neity attributable to phylogeny, study and observation-level effects. 
I2 values range from 0% to 100%, with 25%, 50% and 75% consid-
ered low, moderate and high respectively (Dougherty, 2021).

Meta-regression models were then used to investigate the influ-
ence of moderator variables on effect size. Separate models were 
run for each moderator, including species, phylogeny, study and ob-
servation as random factors, with the moderator included as either 
a categorical or continuous fixed factor. The QM statistic and its ac-
companying p-value output were examined to determine if a given 
moderator had a significant effect on mean effect size (Dougherty, 
2021). p-values of less than 0.05 were considered to be statistically 
significant. Marginal R2 values were also calculated for each fixed 
factor (Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013), pro-
viding a measure of the proportion of total variance explained by the 
fixed effects. R2 values range from 0.00 to 1.00, with zero indicating 
that the moderator variable does not explain the observed hetero-
geneity (Nakagawa & Schielzeth, 2013).

To investigate potential sources of bias in the dataset, a me-
ta-regression model with publication year as a fixed effect was 
performed to identify time-lag bias (Koricheva et  al.,  2013), and a 
trim-and-fill test (Duval & Tweedie, 2000) was performed using the 
“trimfill” function in the R package “metafor” to identify evidence of 
publication bias. Associated funnel plot asymmetry may result from 
a lower likelihood to publish results with non-significance or lower 
sample sizes.

3  |  RESULTS

After filtering an initial 376 search results against our inclusion crite-
ria (Box 1), our systematic literature search produced 37 effect sizes 
from 21 studies (Table S1). We estimated the change in total genetic 
variation between ancestral and novel environments using stand-
ardized mean difference in total genetic variance (SDV) as effect 
size (Noble et al., 2019). This matrix-based effect size enables com-
parison of multivariate phenotypes using standard multilevel meta-
analytic models, weighted by precision. The number of effect sizes 
obtained from each study ranged from one to four (mean = 1.85) and 
the number of traits represented in extracted G-matrices ranged 
from two to 11 (mean = 4.2). The dataset spanned 20 species and 

six taxonomic groups, with insects being the most represented taxo-
nomic group, (48.6%, k [number of effect sizes] = 18), followed by 
fish (16.2%, k = 6; Figure 1b). Regarding moderator variables, effect 
sizes were categorized based on whether novel experimental treat-
ments represented an extreme novel environment (45.9%, k = 17), or 
absolute novel environment (54.1%, k = 20), and whether the study 
used broad-sense (56.7%, k = 21) or narrow-sense (43.3%, k = 16) 
measures of genetic variance (Figure 1c). Given our limited sample 
size, the number of moderator variables was restricted to five to en-
sure sufficient power (van Houwelingen et al., 2002). For complete 
sample sizes and mean effect size estimates for moderator variables, 
see Table S3.

To estimate the overall mean effect and assess whether total 
additive genetic variation increases in novel environments, we per-
formed an analysis using a multilevel random-effect model with 
species, phylogeny, study and observation as random effects. We 
used the heterogeneity statistic I2, a measure of the percentage of 
total variation across effect sizes due to heterogeneity, to assess 
the total heterogeneity explained by the model. I2 values of 25% are 
considered low, 50% moderate and 75% high (Higgins et al., 2003). 
Heterogeneity across effect sizes was high (Total I2 = 96.2%), with 
most (79.8%) attributable to between-study effects, <1.0% attribut-
able to species, <1.0% to phylogenetic history and 16.3% to observa-
tion-level effects (Table S2). Overall, however, there was no change 
in the total additive genetic variation across novel and ancestral en-
vironments, with the overall mean effect close to zero (Figure 1a; 
k = 37, mean and 95% confidence interval [CI] = 0.02 [−0.32 to 0.36], 
p = 0.91). Therefore, our results did not support the hypothesis that 
additive genetic variation in multivariate phenotypes increases in 
novel environments.

To examine this high between-study heterogeneity and potential 
moderating factors of the overall effect, we used meta-regression 
models to test whether our moderator variables explained any sig-
nificant variation. We performed separate meta-regression models 
for each moderator (incorporated as either a categorical or contin-
uous fixed factor), examining QM and associated p-values to deter-
mine a significant effect of moderator variable on effect size. The QM 
statistic performs an omnibus test of all model coefficients to deter-
mine whether a given moderator variable significantly influences the 
mean effect size. p-values of less than 0.05 were considered to be 
statistically significant.

We also calculated marginal R2 values to evaluate the proportion 
of total variance explained by the fixed factor. Marginal R2 values 
range from 0.00 to 1.00, with zero indicating that the moderator 
variable does not explain the observed heterogeneity (Nakagawa & 
Schielzeth, 2013).

We next asked if the type of novel environment, classified by the 
presence of an environmental condition in a population's ancestry, 
affects the magnitude or direction of change in total genetic vari-
ation. To do this, we categorized effect sizes into those from ‘ab-
solute’ novel and ‘extreme’ novel environments (Box 1). According 
to our criteria, a change in food type would be considered an abso-
lute novel environment whereas a change in ancestral food quantity 
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6  |    RILEY et al.

would be an extreme environment. A meta-regression showed 
no relationship between SDV and novel environment type (k = 37, 
QM = 2.09, p = 0.35) and the total variance explained by the fixed 

factor was low (R2 = 0.09). Therefore, type of novel environment as 
defined in our study did not explain any significant variation in effect 
sizes (Figure 2, Table S4). Our results show that the presence of a 
novel environmental condition in a population's evolutionary history 
was not associated with a given change in total additive genetic vari-
ation, and there was no difference between absolute and extreme 
novel environment types.

To examine the role of study design in effect size variation, 
we categorized effect sizes based on whether the source arti-
cle used broad- or narrow-sense measures of genetic variation. 
Broad-sense variation includes all contributors to genetic (addi-
tive, dominance and epistatic variance) and non-genetic (e.g. ma-
ternal effects) variation in the multivariate phenotype, whereas 
narrow-sense variance includes only additive genetic variance. A 
meta-regression showed a significant relationship between SDV 
and study design (k = 37, QM = 10.9, p < 0.01) and moderate total 
variance explained by the fixed factor (R2 = 0.34). Therefore, the 
measure of variance did explain significant variation in effect sizes 
(Figure 2).

To investigate this further, we subsetted the dataset based on 
the study design moderator. Performing a multilevel random-effect 
model with four random factors produced contrasting results for the 
two study designs. For broad-sense studies, the mean effect size es-
timate was positive and not significantly different from zero (k = 21, 
mean = 0.40 [−0.18 to 0.98], p = 0.18). In contrast, in narrow-sense 
studies, the mean effect size estimate was negative and significantly 
different from zero (k = 16, mean = −0.45 [−0.86 to −0.04], p = 0.03; 
Figure 3).

Separate meta-regression models for each moderator were 
then performed on the partitioned datasets (for full meta-re-
gression results see Table S5). We found no relationship between 
SDV and novel environment type, whether studies were limited 
to broad-sense (k = 21, QM = 1.0, p = 0.61) or narrow-sense (k = 16, 
QM = 0.07, p = 0.96). Furthermore, the total variance explained 
by the fixed factor was low (marginal R2 = 0.05, and 0.01 respec-
tively). Therefore, when controlling for measure of variance, the 
type of novel environment did not significantly affect variation in 
effect sizes in either case, in accordance with the results from the 
full dataset.

The full dataset was investigated for evidence of bias. A trim-and-
fill test detected no significant funnel plot asymmetry (p = 0.065) and 
nine “missing” effect sizes located on the right side, thus observed 
results are unlikely due to publication bias against negative results. 
When included, the overall mean effect size did not significantly 

F I G U R E  1  Characteristics of the final dataset. (a) Funnel plot 
showing the relationship between effect size (SDV) and inverse 
standard error (1/SE) (measure of precision). Positive effect sizes 
indicate that total additive genetic variance was greater in the novel 
environment compared to the ancestral environment, and vice 
versa for negative effect sizes. The dotted line shows the mean 
effect size across the whole dataset. (b) Histogram showing the 
number of effect sizes per taxonomic group. (c) Histogram showing 
the number of effect sizes per moderator class.

(a)

(b)

(c)
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differ from zero (k = 46, mean = 0.28 [95% CI = −0.18 to 0.58], 
p = 0.06; Figure S3). A further meta-regression found no relationship 
between effect size and precision (QM = 4.53, p = 0.44; Figure  S4), 
and marginal R2 = 0.064. Furthermore, no relationship was found 
between effect size and year (QM = 0.58, p = 0.44; Figure  S5), and 
marginal R2 = 0.03, indicating no evidence of a time-lag bias.

4  |  DISCUSSION

The release of cryptic genetic variation (CGV) has been proposed as 
a pathway to rapid adaptation in novel environments (Charmantier 
& Garant, 2005; Ledón-Rettig et al., 2014; McGuigan & Sgrò, 2009; 
Paaby & Rockman,  2014; Schlichting,  2008; Waddington,  1953). 
While individual publications show evidence of CGV (Badyaev, 2005; 
Donnelly et  al.,  2018; Ledón-Rettig et  al.,  2009, 2010; McGuigan 
et  al.,  2011; Rohner et  al.,  2013; Rutherford & Lindquist,  1998), 
evidence synthesis is equivocal (Noble et  al.,  2019; Rowiński & 
Rogell, 2017; Wood & Brodie, 2015, 2016). Here, we conducted a 
meta-analysis using systematic criteria for defining novel environ-
ments to answer two questions: (1) Does total additive genetic varia-
tion increase in novel environments versus ancestral environments? 
(2) Does the magnitude or direction of change in total genetic varia-
tion depend on novel environment type (absolute or extreme)? We 
found no overall change in genetic variance in novel environments 

and no effect of novel environment type. However, partitioning 
effect sizes by experimental design, we found increased genetic 
variation in studies using broad-sense measures of variance and de-
creased variation in narrow-sense studies.

Our finding of no overall change in total additive genetic vari-
ation in novel environments supports (Noble et  al.,  2019; Wood 
& Brodie, 2016) and opposes (Rowiński & Rogell, 2017; Wood & 
Brodie, 2015) the conclusions of previous meta-analyses. This may 
suggest that semantic ambiguity is not the primary factor in the 
concealment of CGV during evidence synthesis. However, the re-
lease of CGV may be environment, species or trait specific; there-
fore, a broad generalization of its causation may not be possible. 
In particular, traits associated with fitness under strong directional 
selection (Houle, 1992) or traits subject to sexual selection (Parker 
& Garant, 2004) may express different magnitudes of CGV com-
pared to morphological or physiological traits. Using the desert 
locust (Schistocerca gregaria), Chapuis et al. (2021) found increased 
additive genetic variance in traits least related to fitness compared 
to those under strong stabilizing selection, during environmental 
stress. There is also evidence of environment-specific CGV, with 
Walter et  al.  (2022) finding an increase in additive genetic vari-
ance at low elevations, yet a decrease at high elevations for two 
Senecio species. Given this precedence for context dependence, 
it is important to exercise caution when concluding that CGV is a 
pathway to rapid adaptation under environmental change.

F I G U R E  2  Forest plot comparing SDV 
between extreme and absolute novel 
environments across the full dataset. The 
x-axis corresponds to effect size value, 
with open circles representing the raw 
effect sizes scaled by study precision (1/
SE). Mean effect sizes and 95% CI's for 
each type are shown in black. k represents 
the number of effect sizes per category.

F I G U R E  3  Forest plot comparing 
SDV between broad-sense and narrow-
sense study designs across the combined 
dataset. The x-axis corresponds to effect 
size value, with open circles representing 
the raw effect sizes scaled by study 
precision (1/SE). Mean effect sizes and 
95% CI's for each type are shown in black. 
k represents the number of effect sizes 
per category.
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The exposure of a population to an environment during its evo-
lutionary history may have consequences on the release of CGV 
(Diamond & Martin, 2016; Parsons et al., 2020; Schlichting, 2008; 
Snell-Rood et  al.,  2018; Uller et  al.,  2018). To investigate this, we 
compared “extreme” novelty, arising from change in a condition al-
ready present in a population's ancestry (Chevin & Hoffmann, 2017) 
to “absolute” novelty arising from a condition not experienced pre-
viously (Diamond & Martin,  2016; Snell-Rood et  al.,  2018). As an 
extension of ancestral environments, we predicted that extreme 
novel environments would generate less genetic variation than ab-
solute novel environments (Chevin & Hoffmann,  2017; D'Aguillo 
et  al.,  2022; Parsons et  al.,  2020; Radersma et  al.,  2020; Uller 
et al., 2018). In contrast, we predicted that absolute novel environ-
ments would induce a greater range of phenotypes due to insuffi-
cient time for natural selection to shape an adaptive plastic response 
(Alvarez et al., 2021; Auge et al., 2017; Chevin et al., 2010; Hoyle & 
Ezard, 2012). However, we found no difference in CGV released in 
extreme and novel environments (Figure  2). This was irrespective 
of whether the complete dataset was analysed, or effect sizes from 
broad- or narrow-sense experimental designs were considered inde-
pendently. One explanation is that these environments were poorly 
classified. We used non-author designation of novel environments, 
but our criteria relied on author statements of population's ancestral 
environments. This may not have been a reliable reflection of a lin-
eage's evolutionary history, as the information necessary to deter-
mine an organism's ancestral range is often scarce.

Alternatively, past exposure to an environment does not strongly 
influence the expression of CGV. Developmental bias refers to the 
capacity for development to produce some phenotypes more readily 
than others (Parsons et al., 2020; Uller et al., 2018). If development 
evolves to orientate with the adaptive landscape, increasing multi-
variate phenotypic variation in the direction shaped by past natu-
ral selection (Blows & McGuigan, 2015; Chevin et al., 2010; Noble 
et  al.,  2019), it is possible that even absolute novel environments 
will generate functional multivariate phenotypes (Uller et al., 2018). 
Conversely, absolute novel environments may release ancient adap-
tive plastic responses that do not increase additive genetic variation 
(Parsons et al., 2020). We used just one method to partition novelty; 
alternative subcategories include comparing anthropogenic and nat-
ural environmental change, or stressful and benign environments. 
The interplay between novelty and stress has been approached in 
the literature, with Noble et  al.  (2019) concluding that stress did 
not impact change in additive genetic variance in novel environ-
ments. Our study sought to analyse meta-data on stressful versus 
benign novel environments (Hoffmann & Parsons, 1993; Rowiński & 
Rogell, 2017), however, did not have sufficient statistical power as 
the majority of effect sizes were classified as stressful.

Although our types of novel environment did not explain variation 
in effect sizes, experimental design did explain significant effect size 
variation in our study and Noble et al. (2019). In both cases, novel en-
vironments decreased genetic variation in studies using narrow-sense 
measures of variance and increased genetic variation in studies 
using broad-sense. It remains unclear why additive genetic variation 

decreased in narrow-sense studies; however, one mechanism may be 
the stress-induced convergence of phenotypes owing to induction 
of a general stress response (Hoffmann & Merilä, 1999; Hoffmann 
& Parsons, 1993). If novel environments are also stressful, this may 
constrain development and reduce the extent that genetic variation 
is translated into heritable differences (Bubliy & Loeschcke,  2000; 
Chevin & Hoffmann, 2017; Ebert et al., 1993; Gebhardt-Henrich & 
Van Noordwijk, 1991; Lazarević et al., 1998; Merilä, 1997). In broad-
sense studies, the increase in genetic variation in novel environments 
could arise from inbreeding depression, which is often amplified in 
stressful (or novel) environments (Armbruster & Reed, 2005; Cheptou 
& Donohue, 2011; Fox & Reed, 2011). Variation in inbreeding depres-
sion in populations might also contribute towards the heterogeneity 
in effect sizes observed in studies of CGV.

Broad sense estimates of heritability also include non-ge-
netic sources of phenotypic variation, such as parental effects 
(Bonduriansky et  al.,  2012; Uller,  2012), which can be critical in 
translating the phenotypic accommodation generated in novel en-
vironments into increased genetic variation in offspring (Badyaev & 
Uller,  2009). This mechanism has been proposed to explain novel 
adaptations that allowed the house finch (Carpodacus mexicanus) to 
colonize diverse habitats in the continental USA 70 years after being 
introduced (Badyaev, 2009). Parental effects include genetic and en-
vironmental effects, which may have different consequences to en-
vironmentally induced changes in genetic variance. Parental genetic 
effects are a type of indirect genetic effect (Wolf, 2003), where an 
effect on offspring phenotype is explained by parental genotype, 
such as offspring size differences derived from different maternal 
genotypes (Thomson et  al.,  2017). Parental environmental effects 
occur when a difference in offspring phenotype derives from the 
parent's environment (Hadfield et  al.,  2013). Parental genetic ef-
fects could contribute to increased broad-sense genetic variation in 
the offspring generation. Ewe et al.  (2020) demonstrated the star-
vation-induced reveal of maternally transmitted cryptic epigenetic 
variation in Caenorhabditis elegans that shaped early embryonic de-
velopment of offspring. Studies able to partition parental genetic 
effects from parental environmental effects could present an inter-
esting avenue for CGV research.

In addition to maternal effects, broad sense measures of vari-
ance include non-additive sources, such as dominance and epistasis. 
Epistasis refers to non-linear interactions between segregating loci, 
where the phenotype expressed by one locus changes in magnitude or 
direction as a result of genotypes at a different locus (Mackay, 2014). 
The buffering mechanisms responsible for the accumulation and 
concealment of additive CGV in typical environments also pertain to 
the suppression of epistatic interactions (Mackay, 2014). Thus, suffi-
cient environmental perturbations can alter the genetic variation de-
rived from epistasis (Forsberg & Carlborg, 2017; Suzuki et al., 2020). 
Zan and Carlborg  (2020) demonstrated environmentally induced 
reorganization of the epistatic network in yeast, affecting total ge-
netic variance in growth. In comparison, dominance describes the 
relationship at a heterozygous locus where a single copy of an allele 
is sufficient for its phenotype to be expressed, masking the effect 
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of the recessive allele (Billiard et al., 2021). Recent research demon-
strated the importance of accounting for dominance in models of 
G × E, finding increased prediction accuracy when dominance-by-en-
vironment interactions are incorporated into plant breeding models 
(Alves et al., 2021; Rogers et al., 2021). It is worthwhile to further 
investigate the role of dominance and epistasis in CGV in novel en-
vironments. Additionally, wider decomposition of G × E based on the 
different components of genotypic variation (parental-by-environ-
ment, epistatic-by-environment and dominance-by-environment in-
teractions) could provide valuable insights.

Whether resulting from parental effects or shifting epistatic and 
dominance relationships, CGV nonetheless increases the pheno-
typic diversity upon which natural selection can act. CGV's ultimate 
role in subsequent evolution depends on the nature of variation re-
vealed; if primarily advantageous, deleterious or neutral (Paaby & 
Rockman, 2014). The exposure of a selectively advantageous phe-
notype in a novel environment can expedite rapid adaptation and 
catalyse the fixation of novel traits through genetic accommodation 
and assimilation (Levis & Pfennig, 2019). However, if revealed vari-
ation comprises strongly deleterious mutations, a population may 
be driven further to collapse in a changing environment (Paaby & 
Rockman, 2014). Our findings reinforce that diminished additive ge-
netic variance in novel environments may be offset by an increase in 
non-additive sources of variation, meriting further study into its role 
in rapid adaptation.
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