35 research outputs found

    Problems in Evaluating Grammatical Error Detection Systems

    Get PDF
    ABSTRACT Many evaluation issues for grammatical error detection have previously been overlooked, making it hard to draw meaningful comparisons between different approaches, even when they are evaluated on the same corpus. To begin with, the three-way contingency between a writer's sentence, the annotator's correction, and the system's output makes evaluation more complex than in some other NLP tasks, which we address by presenting an intuitive evaluation scheme. Of particular importance to error detection is the skew of the data -the low frequency of errors as compared to non-errors -which distorts some traditional measures of performance and limits their usefulness, leading us to recommend the reporting of raw measurements (true positives, false negatives, false positives, true negatives). Other issues that are particularly vexing for error detection focus on defining these raw measurements: specifying the size or scope of an error, properly treating errors as graded rather than discrete phenomena, and counting non-errors. We discuss recommendations for best practices with regard to reporting the results of system evaluation for these cases, recommendations which depend upon making clear one's assumptions and applications for error detection. By highlighting the problems with current error detection evaluation, the field will be better able to move forward

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Local and regional climate trends and variabilities in Ethiopia: implications for climate change adaptations

    No full text
    Ethiopia is experiencing considerable impact of climate change and variability in the last five decades. Analyzing climate trends and variability is essential to develop effective adaptation strategies, particularly for countries vulnerable to climate change. This study analyzed trends and variabilities of climate (rainfall, maximum temperature (Tmax), and minimum temperature (Tmin)) at local and regional scales in Ethiopia. The local analysis was carried out considering each meteorological station, while the regional analyses were based on agro-ecological zones (AEZs). This study used observations from 47 rainfall and 37 temperature stations obtained from the Ethiopian Meteorological Institute (EMI) for the period of 1986 to 2020. The Modified Mann-Kendall (MMK) trend test and Theil Sen's slope estimator were used to analyze the trends and magnitudes of change, respectively, in rainfall as well as temperature. The coefficient of variation (CV) and standardized anomaly index (SAI) were also employed to evaluate rainfall and temperature variabilities. The local level analysis revealed that Bega (dry season), Kiremt (main rainy season), and annual rainfall showed increasing trend, albeit no significant, in most stations, but the rainfall in Belg (small rainy) season showed a non-significant decreasing trend. The regional levels analysis also indicated an increasing trend of Bega, Kiremt, and annual rainfall in most AEZs, while Belg rainfall showed a decreasing trend in the greater number of AEZs. The result of both local and regional levels of analysis discerned a spatially and temporally more homogeneous warming trend. Both Tmax and Tmin revealed an increasing trend in annual and seasonal scales at most meteorological stations. Likewise, an increase was recorded for mean Tmax and Tmin in entire/most AEZs. The observed trends and variabilities of rainfall and temperature have several implications for climate change adaptations. For example, the decrease in Belg rainfall in most AEZs would have a negative impact on areas that heavily depend on Belg season's rainfall for crop production. Some climate adaptation options include identifying short maturing crop varieties, soil moisture conservation, and supplemental irrigation of crops using harvested water during the main rainy season. Conversely, since the first three months of Bega season (October to December) are crop harvest season in most parts of Ethiopia, the increase in Bega rainfall would increase crop harvest loss, and hence, early planting date and identifying short maturing crops during the main rainy season are some climate adaptation strategies. Because of the increase in temperature, water demand for irrigation during Bega season will increase due to increased evapotranspiration. On the other hand, the increase in Kiremt rainfall can be harvested and used for supplemental irrigation during Bega as well as the small rainy season, particularly for early planting. In view of these findings, it is imperative to develop and implement effective climate-smart agricultural strategies specific to each agro-ecological zone (AEZ) to adapt to rainfall and temperature changes and variabilities
    corecore