36 research outputs found

    Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic Neuropeptide Signaling without Concomitant AMPK Phosphorylation

    Get PDF
    The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance

    Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats

    Get PDF
    Antipsychotic drugs have been used effectively for the treatment of schizophrenia symptoms, but they are often associated with metabolic side effects such as weight gain and endocrine disruptions. To investigate the possible mechanisms of antipsychotic-induced metabolic effects, we studied the impact of chronic administration of a typical antipsychotic drug (haloperidol) and an atypical antipsychotic (risperidone) to male rats on food intake, body weight, adiposity, and the circulating concentrations of hormones and metabolites that can influence energy homeostasis. Chronic (28 days) haloperidol administration had no effect on food intake, weight gain or adiposity in male rats, whereas risperidone treatment resulted in a transient reduction in food intake and significantly reduced body weight gain compared to vehicle-treated control rats. Whereas neither antipsychotic had any effect on serum lipid profiles, glucose tolerance or the circulating concentrations of hormones controlled by the hypothalamo-pituitary-thyroid (free T4), -adrenal (corticosterone), -somatotropic (IGF-1), or -gonadotropic axes (testosterone), haloperidol increased circulating insulin levels and risperidone increased serum glucagon levels. This finding suggests that haloperidol or risperidone induce distinct metabolic effects. Since metabolic disorders such as obesity and type 2 diabetes mellitus represent serious health issues, understanding antipsychotic-induced endocrine and metabolic effects may ultimately allow better control of these side effects

    Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain

    Get PDF
    Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b

    Lipid-Lowering Effects of Tetradecylthioacetic Acid in Antipsychotic-Exposed, Female Rats: Challenges with Long-Term Treatment

    Get PDF
    Background: Psychiatric patients often require chronic treatment with antipsychotic drugs, and while rats are frequently used to study antipsychotic-induced metabolic adverse effects, long-term exposure has only partially mimicked the appetite-stimulating and weight-inducing effects found in the clinical setting. Antipsychotic-induced effects on serum lipids are also inconsistent in rats, but in a recent study we demonstrated that subchronic treatment with the orexigenic antipsychotic olanzapine resulted in weight-independent increase in serum triglycerides and activation of lipogenic gene expression in female rats. In addition, a recent long-term study in male rats showed that chronic treatment with antipsychotic drugs induced dyslipidemic effects, despite the lack of weight gain. Aims: In the current study, we sought to examine long-term effects of antipsychotic drugs on weight gain, lipid levels and lipid composition after twice-daily administration of antipsychotics to female rats, and to investigate potential beneficial effects of the lipid-lowering agent tetradecylthioacetic acid (TTA), a modified fatty acid. Methods: Female rats were exposed to orexigenic antipsychotics (olanzapine or clozapine), metabolically neutral antipsychotics (aripiprazole or ziprasidone), or TTA for 8 weeks. Separate groups received a combination of clozapine and TTA or olanzapine and TTA. The effects of TTA and the combination of olanzapine and TTA after 2 weeks were also investigated. Results: The antipsychotic-induced weight gain and serum triglyceride increase observed in the subchronic setting was not present after 8 weeks of treatment with antipsychotics, while lipid-lowering effect of TTA was much more pronounced in the chronic than in the subchronic setting, with concomitant upregulation of key oxidative enzymes in the liver. Unexpectedly, TTA potentiated weight gain in rats treated with antipsychotics. Conclusion: TTA is a promising candidate for prophylactic treatment of antipsychotic-induced dyslipidemic effects, but a more valid long-term rat model for antipsychotic-induced metabolic adverse effects is required
    corecore