159 research outputs found

    Docketology, District Courts, and Doctrine

    Get PDF
    Empirical legal scholars have traditionally modeled trial court judicial opinion writing by assuming that judges act rationally, seeking to maximize their influence by writing opinions in politically important cases. To test such views, we collected data from a thousand cases in four different jurisdictions. We recorded information about every judicial action over each case’s life, ranging from the demographic characteristics, workload, and experience of the writing judge; to information about the case, including its jurisdictional basis, complexity, attorney characteristics, and motivating legal theory; to information about the individual orders themselves, including the relevant procedural posture and the winning party. Our data reveal opinions to be rare events in the litigation process: only 3% of all orders, and only 17% of orders applying facts to law, are fully reasoned. Using a hierarchical linear model, we conclude that judges do not write opinions to curry favor with the public or with powerful audiences, nor do they write more when they are less experienced, seeking to advance their careers, or in more interesting case types. Instead, opinion writing is significantly affected by procedure: we predict that judges are three times more likely to write an opinion on a summary judgment motion than a discovery motion, all else held equal. Judges similarly write more in cases that are later appealed, and in commercial cases, while writing less in tort and prisoner cases. Finally, jurisdictional culture is very important. These findings challenge the conventional wisdom and suggest the need for further research on the behavioral aspects of opinion writing

    Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

    Get PDF
    1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags. 2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km. 3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass). 4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat. 5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far. 6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area

    Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands

    Get PDF
    This article is protected by copyright. All rights reserved. Acknowledgments This work was funded through the projects ECOCYCLES (BIODIVERSA 2008, Era‐net European project, EUI2008‐03641 and EUI2008‐03658), ECOVOLE (CGL2012‐35348), and ECOTULA (CGL2015‐66962‐C2‐1‐R; Ministerio de Economía y Competitividad of Spain), and by NERC NE/G002045/1 to XL. We thank the many people that help during fieldwork, and Deon Roos and Sally Bach for correcting the English. We held all necessary permits for animal experimentation for Spain and small‐mammal capture.Peer reviewedPublisher PD

    Skin-impedance in Fabry Disease: A prospective, controlled, non-randomized clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously demonstrated improved sweating after enzyme replacement therapy (ERT) in Fabry disease using the thermo-regularity sweat and quantitative sudomotor axon reflex tests. Skin-impedance, a measure skin-moisture (sweating), has been used in the clinical evaluation of burns and pressure ulcers using the portable dynamic dermal impedance monitor (DDIM) system.</p> <p>Methods</p> <p>We compared skin impedance measurements in hemizygous patients with Fabry disease (22 post 3-years of bi-weekly ERT and 5 ERT naive) and 22 healthy controls. Force compensated skin-moisture values were used for statistical analysis. Outcome measures included 1) moisture reading of the 100<sup>th </sup>repetitive reading, 2) rate of change, 3) average of 60–110<sup>th </sup>reading and 4) overall average of all readings.</p> <p>Results</p> <p>All outcome measures showed a significant difference in skin-moisture between Fabry patients and control subjects (p < 0.0001). There was no difference between Fabry patients on ERT and patients naïve to ERT. Increased skin-impedance values for the four skin-impedance outcome measures were found in a small number of dermatome test-sites two days post-enzyme infusions.</p> <p>Conclusion</p> <p>The instrument portability, ease of its use, a relatively short time required for the assessment, and the fact that DDIM system was able to detect the difference in skin-moisture renders the instrument a useful clinical tool.</p

    Landscape Composition and Spatial Prediction of Alveolar Echinococcosis in Southern Ningxia, China

    Get PDF
    In humans, larvae of the fox tapeworm Echinococcus multilocularis typically infect the liver where metastasis, calcification and necrosis cause the zoonotic disease alveolar echinococcosis (AE). Treatment is difficult. Early detection greatly increases patient life expectancy but under-detection is a problem. Understanding the ecological conditions that elevate AE risk would help identify at-risk communities. Voles and lemmings of the subfamily Arvicolinae are important intermediate hosts in most AE endemic areas, and arvicoline habitat has been proposed as a predictor of AE risk. Using a model of spatial autocorrelation with land cover identified from satellite remote sensing imagery, we identified AE hotspots in southern Ningxia Hui Autonomous Region (NHAR), China. Hotspots were not located near optimal arvicoline habitats. Thus, non-arvicolines provide principal reservoirs in NHAR and the range of ecological conditions sustaining E. multilocularis transmission in China is greater than previously thought. We also show: social factors explain higher prevalence in females than males; dogs increase infection risk; and we argue that water source quality is important via interaction with other environmental variables. Our map of AE prevalence represents the current state-of-the-art regarding the spatial distribution of AE in southern NHAR and provides an important baseline for future monitoring programs there

    Prisoners in Their Habitat? Generalist Dispersal by Habitat Specialists: A Case Study in Southern Water Vole (Arvicola sapidus)

    Get PDF
    Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus), a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km2) and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142) for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47) from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10%) between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats

    Microbial Co-occurrence Relationships in the Human Microbiome

    Get PDF
    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek – VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969

    Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier

    Get PDF
    Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems
    corecore