144 research outputs found

    Perspectives on weak interactions in complex materials at different length scales

    Get PDF
    Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties

    New/emerging psychoactive substances and associated psychopathological consequences

    Get PDF
    Submitted 24 November 2018, Revised 18 June 2019, Accepted 26 June 2019, Published online 22 July 2019BackgroundThe present paper provides an updated review of both the large number of new/novel/emerging psychoactive substances (NPS) and their associated psychopathological consequences. Focus was here given on identification of those NPS being commented in specialised online sources and the related short-/long-term psychopathological and medical ill-health effects.MethodsNPS have been identified through an innovative crawling/navigating software, called the 'NPS.Finder®', created in order to facilitate the process of early recognition of NPS online. A range of information regarding NPS, including chemical and street names; chemical formula; three-dimensional image and anecdotally reported clinical/psychoactive effects, were here made available.ResultsUsing the 'NPS.Finder®' approach, a few thousand NPS were here preliminarily identified, a number which is about 4-fold higher than those figures suggested by European and international drug agencies. NPS most commonly associated with the onset of psychopathological consequences included here synthetic cannabinoids/cannabimimetics; new synthetic opioids; ketamine-like dissociatives; novel stimulants; novel psychedelics and several prescription and over-the-counter medicines.ConclusionsThe ever-increasing changes in terms of recreational psychotropics' availability represent a relatively new challenge for psychiatry, as the pharmacodynamics and pharmacokinetics of many NPS have not been thoroughly understood. Health/mental health professionals should be informed about the range of NPS; their intake modalities; their psychoactive sought-after effects; the idiosyncratic psychotropics' combinations and finally, their medical and psychopathological risks.Peer reviewe

    Modelling the impact of improving screening and treatment of chronic hepatitis C virus infection on future hepatocellular carcinoma rates and liver-related mortality.

    Get PDF
    BACKGROUND: The societal, clinical and economic burden imposed by the complications of chronic hepatitis C virus (HCV) infection - including cirrhosis and hepatocellular carcinoma (HCC) - is expected to increase over the coming decades. However, new therapies may improve sustained virological response (SVR) rates and shorten treatment duration. This study aimed to estimate the future burden of HCV-related disease in England if current management strategies remain the same and the impact of increasing diagnosis and treatment of HCV as new therapies become available. METHODS: A previously published model was adapted for England using published literature and government reports, and validated through an iterative process of three meetings of HCV experts. The impact of increasing diagnosis and treatment of HCV as new therapies become available was modelled and compared to the base-case scenario of continuing current management strategies. To assess the 'best case' clinical benefit of new therapies, the number of patients treated was increased by a total of 115% by 2018. RESULTS: In the base-case scenario, total viraemic (HCV RNA-positive) cases of HCV in England will decrease from 144,000 in 2013 to 76,300 in 2030. However, due to the slow progression of chronic HCV, the number of individuals with cirrhosis, decompensated cirrhosis and HCC will continue to increase over this period. The model suggests that the 'best case' substantially reduces HCV-related hepatic disease and HCV-related liver mortality by 2020 compared to the base-case scenario. The number of HCV-related HCC cases would decrease 50% by 2020 and the number progressing from infection to decompensated cirrhosis would decline by 65%. Therefore, compared to projections of current practices, increasing treatment numbers by 115% by 2018 would reduce HCV-related mortality by 50% by 2020. CONCLUSIONS: This analysis suggests that with current treatment practices the number of patients developing HCV-related cirrhosis, decompensated cirrhosis and HCC will increase substantially, with HCV-related liver deaths likely to double by 2030. However, increasing diagnosis and treatment rates could optimise the reduction in the burden of disease produced by the new therapies, potentially halving HCV-related liver mortality and HCV-related HCC by 2020

    Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    Get PDF
    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions

    Differential Impact of EGFR-Targeted Therapies on Hypoxia Responses: Implications for Treatment Sensitivity in Triple-Negative Metastatic Breast Cancer

    Get PDF
    In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed.MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability.Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC

    The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention

    Get PDF
    Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore