346 research outputs found

    Density-dependent positive feedbacks buffer aquatic plants from interactive effects of eutrophication and predator loss

    Get PDF
    Self-facilitation allows populations to persist under disturbance by ameliorating experienced stress. In coastal ecosystems, eutrophication and declines of large predatory fish are two common disturbances that can synergistically impact habitat-forming plants by benefitting ephemeral algae. In theory, density-dependent intraspecific plant facilitation could weaken such effects by ameliorating the amount of experienced stress. Here, we tested whether and how shoot density of a common aquatic plant (Myriophyllum spicatum) alters the response of individual plants to eutrophication and exclusion of large predatory fish, using a 12-week cage experiment in the field. Results showed that high plant density benefitted individual plant performance, but only when the two stressors were combined. Epiphytic algal biomass per plant more than doubled in cages that excluded large predatory fish, indicative of a trophic cascade. Moreover, in this treatment, individual shoot biomass, as well as number of branches, increased with density when nutrients were added, but decreased with density at ambient nutrient levels. In contrast, in open cages that large predatory fish could access, epiphytic algal biomass was low and individual plant biomass and number of branches were unaffected by plant density and eutrophication. Plant performance generally decreased under fertilization, suggesting stressful conditions. Together, these results suggest that intraspecific plant facilitation occurred only when large fish exclusion (causing high epiphyte load) was accompanied by fertilization, and that intraspecific competition instead prevailed when no nutrients were added. As coastal ecosystems are increasingly exposed to multiple and often interacting stressors such as eutrophication and declines of large predatory fish, maintaining high plant density is important for ecosystem-based management.</p

    Biologically Inspired Monocular Vision Based Navigation and Mapping in GPS-Denied Environments

    Get PDF
    This paper presents an in-depth theoretical study of bio-vision inspired feature extraction and depth perception method integrated with vision-based simultaneous localization and mapping (SLAM). We incorporate the key functions of developed visual cortex in several advanced species, including humans, for depth perception and pattern recognition. Our navigation strategy assumes GPS-denied manmade environment consisting of orthogonal walls, corridors and doors. By exploiting the architectural features of the indoors, we introduce a method for gathering useful landmarks from a monocular camera for SLAM use, with absolute range information without using active ranging sensors. Experimental results show that the system is only limited by the capabilities of the camera and the availability of good corners. The proposed methods are experimentally validated by our self-contained MAV inside a conventional building

    Density-dependent positive feedbacks buffer aquatic plants from interactive effects of eutrophication and predator loss

    Get PDF
    Self-facilitation allows populations to persist under disturbance by ameliorating experienced stress. In coastal ecosystems, eutrophication and declines of large predatory fish are two common disturbances that can synergistically impact habitat-forming plants by benefitting ephemeral algae. In theory, density-dependent intraspecific plant facilitation could weaken such effects by ameliorating the amount of experienced stress. Here, we tested whether and how shoot density of a common aquatic plant (Myriophyllum spicatum) alters the response of individual plants to eutrophication and exclusion of large predatory fish, using a 12-week cage experiment in the field. Results showed that high plant density benefitted individual plant performance, but only when the two stressors were combined. Epiphytic algal biomass per plant more than doubled in cages that excluded large predatory fish, indicative of a trophic cascade. Moreover, in this treatment, individual shoot biomass, as well as number of branches, increased with density when nutrients were added, but decreased with density at ambient nutrient levels. In contrast, in open cages that large predatory fish could access, epiphytic algal biomass was low and individual plant biomass and number of branches were unaffected by plant density and eutrophication. Plant performance generally decreased under fertilization, suggesting stressful conditions. Together, these results suggest that intraspecific plant facilitation occurred only when large fish exclusion (causing high epiphyte load) was accompanied by fertilization, and that intraspecific competition instead prevailed when no nutrients were added. As coastal ecosystems are increasingly exposed to multiple and often interacting stressors such as eutrophication and declines of large predatory fish, maintaining high plant density is important for ecosystem-based management

    An experimental customer satisfaction index to evaluate the performance of city logistics services

    Get PDF
    © 2016 Vilnius Gediminas Technical University (VGTU) Press. Freight transport in urban areas entails benefits (i.e. free access to goods when needed), but also negative externalities (environmental, social and transportation impacts). In response to these problems, the concept of city logistics emerged, for the purpose of planning, organizing, coordinating and controlling physical and information flows in order to find a compromise between efficient freight distribution in urban areas and protection of the environment. A typical city logistics initiative is the Urban Freight Consolidation Centre (UFCC), the benefits of which are significant. Its financial issues though represent a huge problem for public administrations. However, a large customer network, comprising retailers participating in the initiative, could make the UFCC a self-financing scheme. The key to expanding the scheme is closely linked with marketing campaigns and customer care. Therefore, customer care analysis represents an important tool in developing UFCC schemes. In this paper, a new Customer Satisfaction Index (CSI) is proposed for evaluating UFCC service quality. The new index, named CSImod, is a modified version of the traditional CSI, but places greater emphasis on customer dissatisfaction, so as to analyse the most critical areas of the service with a view to improving them. The index has been tested using experimental data collected within the CIVITAS RENAISSANCE Project, in which the Bristol and Bath Freight Consolidation Centre (BBFCC) scheme was evaluated. The evaluation was done from a user perspective, i.e. the participating retailers. The CSImod places more importance on the most dissatisfied customers making it possible to understand why they are dissatisfied and with what. Thus, it is possible to intervene with the aim of improving those areas of the service that are perceived as the worst. In spite of the high level of satisfaction with the overall service provided by the BBFCC, thanks to the CSImod the analysis pointed out that some retailers are dissatisfied with the delivery time arrangements and also with deliveries that were getting wet, issues about which the BBFCC manager was totally unaware. The CSImod could be used by UFCC operators to extend the network of the retailers involved and could therefore provide an implicit solution for making the scheme self-financing

    Multiple Episodes of Convergence in Genes of the Dim Light Vision Pathway in Bats

    Get PDF
    The molecular basis of the evolution of phenotypic characters is very complex and is poorly understood with few examples documenting the roles of multiple genes. Considering that a single gene cannot fully explain the convergence of phenotypic characters, we choose to study the convergent evolution of rod vision in two divergent bats from a network perspective. The Old World fruit bats (Pteropodidae) are non-echolocating and have binocular vision, whereas the sheath-tailed bats (Emballonuridae) are echolocating and have monocular vision; however, they both have relatively large eyes and rely more on rod vision to find food and navigate in the night. We found that the genes CRX, which plays an essential role in the differentiation of photoreceptor cells, SAG, which is involved in the desensitization of the photoactivated transduction cascade, and the photoreceptor gene RH, which is directly responsible for the perception of dim light, have undergone parallel sequence evolution in two divergent lineages of bats with larger eyes (Pteropodidae and Emballonuroidea). The multiple convergent events in the network of genes essential for rod vision is a rare phenomenon that illustrates the importance of investigating pathways and networks in the evolution of the molecular basis of phenotypic convergence

    Habitat segregation of plate phenotypes in a rapidly expanding population of three-spined stickleback

    Get PDF
    Declines of large predatory fish due to overexploitation are restructuring food webs across the globe. It is now becoming evident that restoring these altered food webs requires addressing not only ecological processes, but evolutionary ones as well, because human-induced rapid evolution may in turn affect ecological dynamics. We studied the potential for niche differentiation between different plate armor phenotypes in a rapidly expanding population of a small prey fish, the three-spined stickleback (Gasterosteus aculeatus). In the central Baltic Sea, three-spined stickleback abundance has increased dramatically during the past decades. The increase in this typical mesopredator has restructured near-shore food webs, increased filamentous algal blooms, and threatens coastal biodiversity. Time-series data covering 22 years show that the increase coincides with a decline in the number of juvenile perch (Perca fluviatilis), the most abundant predator of stickleback along the coast. We investigated the distribution of different stickleback plate armor phenotypes depending on latitude, environmental conditions, predator and prey abundances, nutrients, and benthic production; and described the stomach content of the stickleback phenotypes using metabarcoding. We found two distinct lateral armor plate phenotypes of stickleback, incompletely and completely plated. The proportion of incompletely plated individuals increased with increasing benthic production and decreasing abundances of adult perch. Metabarcoding showed that the stomach content of the completely plated individuals more often contained invertebrate herbivores (amphipods) than the incompletely plated ones. Since armor plates are defense structures favored by natural selection in the presence of fish predators, the phenotype distribution suggests that a novel low-predation regime favors stickleback with less armor. Our results suggest that morphological differentiation of the three-spined stickleback has the potential to affect food web dynamics and influence the persistence and resilience of the stickleback take-over in the Baltic Sea.Peer reviewe

    Vision Impairs the Abilities of Bats to Avoid Colliding with Stationary Obstacles

    Get PDF
    Background: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as ‘‘distress calls’ ’ of other bats, contributed to probabilities of collision. Methodology/Principal Findings: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. Conclusions/Significance: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlight

    Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits

    Full text link
    [EN] Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTHS and SlXTHS from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTHS and SlXTHS). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested. (C) 2013 Elsevier GmbH. All rights reserved.This work was funded by GVA, PROMETEO/2009/075. We wish to thank Mr. D.A. Lindsay for correcting the English version of the manuscript.Muñoz Bertomeu, J.; Miedes, E.; Lorences, EP. (2013). Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology. 170(13):1194-1201. https://doi.org/10.1016/j.jplph.2013.03.015S119412011701
    • …
    corecore