239 research outputs found

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    On the origin of the anomalous behaviour of 2+ excitation energies in the neutron-rich Cd isotopes

    Full text link
    Recent experimental results obtained using ÎČ\beta decay and isomer spectroscopy indicate an unusual behaviour of the energies of the first excited 2+^{+} states in neutron-rich Cd isotopes approaching the N=82 shell closure. To explain the unexpected trend, changes of the nuclear structure far-off stability have been suggested, namely a quenching of the N=82 shell gap already in 130^{130}Cd, only two proton holes away from doubly magic 132^{132}Sn. We study the behaviour of the 2+^+ energies in the Cd isotopes from N=50 to N=82, i.e. across the entire span of a major neutron shell using modern beyond mean field techniques and the Gogny force. We demonstrate that the observed low 2+^+ excitation energy in 128^{128}Cd close to the N=82 shell closure is a consequence of the doubly magic character of this nucleus for oblate deformation favoring thereby prolate configurations rather than spherical ones.Comment: 10 pages, 4 figures, to be publised in Phys. Lett.

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    Restoration of the N=82 Shell Gap from Direct Mass Measurements of 132,134^{132,134}Sn

    Get PDF
    A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of 134^{134}Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of “shell quenching.” In fact, the new shell gap value for the short-lived 132^{132}Sn is larger than that of the doubly-magic 48^{48}Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the rr process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides

    Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides

    Get PDF
    The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.Comment: 23 pages, 13 figure

    Mass measurements beyond the major r-process waiting point 80Zn

    Get PDF
    High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron capture process where neutron separation energy and neutron capture Q-value are determined experimentally. As a consequence, the astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N = 50 shell closure for Z = 30 farther from stability.Comment: 4 pages, 3 figure
    • 

    corecore