14 research outputs found

    Angular momentum projection of cranked Hartree-Fock states: Application to terminating bands in A~44 nuclei

    Full text link
    We present the first systematic calculations based on the angular-momentum projection of cranked Slater determinants. We propose the Iy --> I scheme, by which one projects the angular momentum I from the 1D cranked state constrained to the average spin projection of =I. Calculations performed for the rotational band in 46Ti show that the AMP Iy --> I scheme offers a natural mechanism for correcting the cranking moment of inertia at low-spins and shifting the terminating state up by ~2 MeV, in accordance with data. We also apply this scheme to high-spin states near the band termination in A~44 nuclei, and compare results thereof with experimental data, shell-model calculations, and results of the approximate analytical symmetry-restoration method proposed previously.Comment: 9 RevTeX pages, 8 EPS figures, submitted to Physical Review

    Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.38j): a new version of the program

    Full text link
    We describe the new version (v2.38j) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected two insignificant errors.Comment: 45 LaTeX pages, 4 figures, submitted to Computer Physics Communication

    Large-Scale Self-Consistent Nuclear Mass Calculations

    Full text link
    The program of systematic large-scale self-consistent nuclear mass calculations that is based on the nuclear density functional theory represents a rich scientific agenda that is closely aligned with the main research directions in modern nuclear structure and astrophysics, especially the radioactive nuclear beam physics. The quest for the microscopic understanding of the phenomenon of nuclear binding represents, in fact, a number of fundamental and crucial questions of the quantum many-body problem, including the proper treatment of correlations and dynamics in the presence of symmetry breaking. Recent advances and open problems in the field of nuclear mass calculations are presented and discussed.Comment: 21 pages, 5 figures, submitted to International Journal of Mass Spectrometr

    On the origin of the anomalous behaviour of 2+ excitation energies in the neutron-rich Cd isotopes

    Full text link
    Recent experimental results obtained using β\beta decay and isomer spectroscopy indicate an unusual behaviour of the energies of the first excited 2+^{+} states in neutron-rich Cd isotopes approaching the N=82 shell closure. To explain the unexpected trend, changes of the nuclear structure far-off stability have been suggested, namely a quenching of the N=82 shell gap already in 130^{130}Cd, only two proton holes away from doubly magic 132^{132}Sn. We study the behaviour of the 2+^+ energies in the Cd isotopes from N=50 to N=82, i.e. across the entire span of a major neutron shell using modern beyond mean field techniques and the Gogny force. We demonstrate that the observed low 2+^+ excitation energy in 128^{128}Cd close to the N=82 shell closure is a consequence of the doubly magic character of this nucleus for oblate deformation favoring thereby prolate configurations rather than spherical ones.Comment: 10 pages, 4 figures, to be publised in Phys. Lett.

    Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): a new version of the program

    Full text link
    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.Comment: Accepted for publication to Computer Physics Communications. Program files re-submitted to Comp. Phys. Comm. Program Library after correction of several minor bug

    Spin-orbit term and spin-fields: extension of Skyrme-force induced local energy density approach

    Full text link
    A systematic study of terminating states in A\sim50 mass region using the self-consistent Skyrme-Hartree-Fock model is presented. The objective is to demonstrate that the terminating states, due to their intrinsic simplicity, offer unique and so far unexplored opportunities to study different aspects of the effective NN interaction or nuclear local energy density functional. In particular, we demonstrate that the agreement of the calculations to the data depend on the spin fields and the spin-orbit term which, in turn, allows to constrain the appropriate Landau parameters and the strength of the spin-orbit potential.Comment: 23 pages, 9 figures, submitted to PR

    Multiple shape coexistence in the nucleus 80^{80}Zr

    Get PDF
    We study the low-lying energy spectrum of the rp-process waiting point nucleus 80Zr with state-of-the-art beyond mean field methods with the Gogny D1S interaction. Symmetry restoration and configuration mixing of axial and triaxial shapes are included in the calculations. Five 0+ states corresponding to different nuclear shapes are obtained below 2.25 MeV and several rotational and {\gamma}- bands built upon them are identified. Nevertheless, these states do not modify the {\beta}-decay half-life having a negligible effect in the rp-process. A good agreement with the available experimental data is obtained.Comment: 6 pages, 3 figures, submitted to Physics Letters

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    Using genetic and ant algorithms to solve transport problems

    No full text
    W pracy przedstawiono możliwości zastosowania metaheurystyk w transporcie. Przy użyciu algorytmu genetycznego i mrówkowego dokonano optymalizacji długości trasy przejazdu, a rezultaty porównano ze znanymi wynikami. Przedstawiono również próbę optymalizacji tras ze względu na czas trwania przejazdu.The paper presents possibilities to employ metaheuristics in transport. The research involved using genetic and ant algorithm to optimise drive/ride route length, and obtained results were compared to known results. Moreover, the paper presents an effort to optimise routes with regard to drive duration
    corecore