1,647 research outputs found

    Crazy heart: kinematics of the "star pile" in Abell 545

    Get PDF
    We study the structure and internal kinematics of the "star pile" in Abell 545 - a low surface brightness structure lying in the center of the cluster.We have obtained deep long-slit spectroscopy of the star pile using VLT/FORS2 and Gemini/GMOS, which is analyzed in conjunction with deep multiband CFHT/MEGACAM imaging. As presented in a previous study the star pile has a flat luminosity profile and its color is consistent with the outer parts of elliptical galaxies. Its velocity map is irregular, with parts being seemingly associated with an embedded nucleus, and others which have significant velocity offsets to the cluster systemic velocity with no clear kinematical connection to any of the surrounding galaxies. This would make the star pile a dynamically defined stellar intra-cluster component. The complicated pattern in velocity and velocity dispersions casts doubts on the adequacy of using the whole star pile as a dynamical test for the innermost dark matter profile of the cluster. This status is fulfilled only by the nucleus and its nearest surroundings which lie at the center of the cluster velocity distribution.Comment: Accepted for publication in A&A. 10 pages & 6 figure

    Patients’ use of information about medicine side effects in relation to experiences of suspected adverse drug reactions

    Get PDF
    Background Adverse drug reactions (ADRs) are common, and information about medicines is increasingly widely available to the public. However, relatively little work has explored how people use medicines information to help them assess symptoms that may be suspected ADRs. Objective Our objective was to determine how patients use patient information leaflets (PILs) or other medicines information sources and whether information use differs depending on experiences of suspected ADRs. Method This was a cross-sectional survey conducted in six National Health Service (NHS) hospitals in North West England involving medical in-patients taking at least two regular medicines prior to admission. The survey was administered via a questionnaire and covered use of the PIL and other medicines information sources, perceived knowledge about medicines risks/ADRs, experiences of suspected ADRs, plus demographic information. Results Of the 1,218 respondents to the survey, 18.8 % never read the PIL, whilst 6.5 % only do so if something unexpected happens. Educational level was related to perceived knowledge about medicines risks, but not to reading the PIL or seeking further information about medicines risks. Over half the respondents (56.0 %) never sought more information about possible side effects of medicines. A total of 57.2 % claimed they had experienced a suspected ADR. Of these 85.9 % were either very sure or fairly sure this was a reaction to a medicine. Over half of those experiencing a suspected ADR (53.8 %) had read the PIL, of whom 36.2 % did so before the suspected ADR occurred, the remainder afterwards. Reading the PIL helped 84.8 % of these respondents to decide they had experienced an ADR. Educational level, general knowledge of medicines risks and number of regular medicines used all increased the likelihood of experiencing an ADR. Conclusion More patients should be encouraged to read the PIL supplied with medicines. The results support the view that most patients feel knowledgeable about medicines risks and suspected ADRs and value information about side effects, but that reading about side effects in PILs or other medicines information sources does not lead to experiences of suspected ADRs

    Schroedinger equation for joint bidirectional motion in time

    Full text link
    The conventional, time-dependent Schroedinger equation describes only unidirectional time evolution of the state of a physical system, i.e., forward or, less commonly, backward. This paper proposes a generalized quantum dynamics for the description of joint, and interactive, forward and backward time evolution within a physical system. [...] Three applications are studied: (1) a formal theory of collisions in terms of perturbation theory; (2) a relativistically invariant quantum field theory for a system that kinematically comprises the direct sum of two quantized real scalar fields, such that one field evolves forward and the other backward in time, and such that there is dynamical coupling between the subfields; (3) an argument that in the latter field theory, the dynamics predicts that in a range of values of the coupling constants, the expectation value of the vacuum energy of the universe is forced to be zero to high accuracy. [...]Comment: 30 pages, no figures. Related material is in quant-ph/0404012. Differs from published version by a few added remarks on the possibility of a large-scale-average negative energy density in spac

    Predictions from Lattice QCD

    Get PDF
    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic D→KlνD\to Kl\nu decay, the decay constant of the DD meson, and the mass of the BcB_c meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd International Symposium on Lattice Field Theory, Dublin, July 25-3

    Viral Hepatitis and Rapid Diagnostic Test Based Screening for HBsAg in HIV-infected Patients in Rural Tanzania.

    Get PDF
    \ud \ud Co-infection with hepatitis B virus (HBV) is highly prevalent in people living with HIV in Sub-Saharan Africa. Screening for HBV surface antigen (HBsAg) before initiation of combination antiretroviral therapy (cART) is recommended. However, it is not part of diagnostic routines in HIV programs in many resource-limited countries although patients could benefit from optimized antiretroviral therapy covering both infections. Screening could be facilitated by rapid diagnostic tests for HBsAg. Operating experience with these point of care devices in HIV-positive patients in Sub-Saharan Africa is largely lacking. We determined the prevalence of HBV and Hepatitis C virus (HCV) infection as well as the diagnostic accuracy of the rapid test device Determine HBsAg in an HIV cohort in rural Tanzania. Prospectively collected blood samples from adult, HIV-1 positive and antiretroviral treatment-naïve patients in the Kilombero and Ulanga antiretroviral cohort (KIULARCO) in rural Tanzania were analyzed at the point of care with Determine HBsAg, a reference HBsAg EIA and an anti-HCV EIA. Samples of 272 patients were included. Median age was 38 years (interquartile range [IQR] 32-47), 169/272 (63%) subjects were females and median CD4+ count was 250 cells/µL (IQR 97-439). HBsAg was detected in 25/272 (9.2%, 95% confidence interval [CI] 6.2-13.0%) subjects. Of these, 7/25 (28%) were positive for HBeAg. Sensitivity of Determine HBsAg was rated at 96% (95% CI 82.8-99.6%) and specificity at 100% (95% CI, 98.9-100%). Antibodies to HCV (anti-HCV) were found in 10/272 (3.7%, 95% CI 2.0-6.4%) of patients. This study reports a high prevalence of HBV in HIV-positive patients in a rural Tanzanian setting. The rapid diagnostic test Determine HBsAg is an accurate assay for screening for HBsAg in HIV-1 infected patients at the point of care and may further help to guide cART in Sub-Saharan Africa

    Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field

    Full text link
    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature TcT_c shows clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of TcT_c with impurities. Based on the time dependent Ginzburg-Landau theory, we derive a model to account for the striking feature of TcT_c in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated TcT_c quantitatively agrees with experiments. We also focus on the role of superconducting fluctuations on the upper critical fields Hc2H_{c2} of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that Hc2H_{c2} may be strongly enhanced by such fluctuations.Comment: to appear in Journal of Physics: Condensed Matte

    Algebraic Bethe ansatz method for the exact calculation of energy spectra and form factors: applications to models of Bose-Einstein condensates and metallic nanograins

    Full text link
    In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunneling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunneling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics. Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions. In applying all of the above models to physical situations, the need for an exact analysis of small scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.Comment: 49 pages, 1 figure, invited review for J. Phys. A., published version available at http://stacks.iop.org/JPhysA/36/R6

    Massive Stars In The W33 Giant Molecular Complex

    Get PDF
    Rich in H II regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at = ∼ ◦ l 12.8 and at a distance of 2.4 kpc and has a size of ≈10 pc and a total mass of ≈(0.8−8.0) × 105 M⊙. The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4–7 stars. The distribution of spectral types suggests that this population formed during the past ∼2–4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6–30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813–178 located on the northwest edge of W33 does not appear to be physically associated with W33

    The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback

    Get PDF
    Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The Lx - Tx relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo
    • …
    corecore