Abstract

The conventional, time-dependent Schroedinger equation describes only unidirectional time evolution of the state of a physical system, i.e., forward or, less commonly, backward. This paper proposes a generalized quantum dynamics for the description of joint, and interactive, forward and backward time evolution within a physical system. [...] Three applications are studied: (1) a formal theory of collisions in terms of perturbation theory; (2) a relativistically invariant quantum field theory for a system that kinematically comprises the direct sum of two quantized real scalar fields, such that one field evolves forward and the other backward in time, and such that there is dynamical coupling between the subfields; (3) an argument that in the latter field theory, the dynamics predicts that in a range of values of the coupling constants, the expectation value of the vacuum energy of the universe is forced to be zero to high accuracy. [...]Comment: 30 pages, no figures. Related material is in quant-ph/0404012. Differs from published version by a few added remarks on the possibility of a large-scale-average negative energy density in spac

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019