296 research outputs found

    Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    Get PDF
    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells

    Nutritional Asymmetries Are Related to Division of Labor in a Queenless Ant

    Get PDF
    Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage

    Social stress increases the susceptibility to infection in the ant Harpegnathos saltator

    Get PDF
    Aggressive interactions between members of a social group represent an important source of social stress with all its negative follow-ups. We used the ponerine ant Harpegnathos saltator to study the effects of frequent aggressive interactions on the resistance to different stressors. In these ants, removal or death of reproducing animals results in a period of social instability within the colony that is characterized by frequent ritualized aggressive interactions leading to the establishment of a new dominance structure. Animals are more susceptible to infections during this period, whereas their resistance against other stressors remained unchanged. This is associated with a shift from glutathione-S-transferase activities towards glutathione peroxidase activities, which increases the antioxidative capacity at the expense of their immune competence

    Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signalling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signalling molecule is sphingosine-1-phosphate (S1P) whose breakdown is catalysed by sphingosine-1-phosphate lyase (S1PL), a pyridoxal 5 '-phosphate (PLP) dependent enzyme that catalyses the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine (PE). Here we show the pathogenic bacterium Burkholderia pseudomallei K96243 encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established mass spectrometry-based methodology we show that recombinant S1PL2021 is catalytically active. Using recombinant human fatty aldehyde dehydrogenase (FALDH) we developed a spectrophotometric, enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the x-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner.The authors thanks the following for funding: The Biotechnology and Biological Sciences Research Council (BBSRC) for an EastBio Doctoral Training Programme PhD studentship award to C McLean (BB/J01446X/1) and a grant awarded to DJ Campopiano (BB/I013687/1) that supported J Lowther and DJ Clarke. R Custodio was supported by the Defence Science and Technology Laboratory under contract DSTLX-1000060221 (WP1). We thank the staff of the Diamond Light Source, UK for help with data collection. The authors thank Prof. John RW Govan (University of Edinburgh) for his suggestions regarding Burkholderia strains and enthusiastic support of this work. We also thanks Dr. Kevin Ralston for help in the synthesis of 2E-HEX. The data associated with this paper is available to download (http://dx.doi.org/10.7488/ds/1412)

    Inhibition of sphingosine 1-phosphate protects mice against chondrocyte catabolism and osteoarthritis

    Get PDF
    Summary Objective Cartilage loss observed in osteoarthritis (OA) is prevented when osteoclasts in the subchondral bone are inhibited in mice. Here, we investigated the role of the osteoclast secretome and of the lipid mediator sphingosine 1-phosphate (S1P) in chondrocyte metabolism and OA. Materials and methods We used SphK1LysMCre and wild type mice to assess the effect of murine osteoclast secretome in chondrocyte metabolism. Gene and protein expressions of matrix metalloproteinase (Mmp) were quantified in chondrocytes and explants by RT-qPCR and Western blots. SphK1LysMCre mice or wild type mice treated with S1P2 receptor inhibitor JTE013 or anti-S1P neutralizing antibody sphingomab are analyzed by OA score and immunohistochemistry. Results The osteoclast secretome increased the expression of Mmp3 and Mmp13 in murine chondrocytes and cartilage explants and activated the JNK signaling pathway, which led to matrix degradation. JTE013 reversed the osteoclast-mediated chondrocyte catabolism and protected mice against OA, suggesting that osteoclastic S1P contributes to cartilage damage in OA via S1P/S1P2 signaling. The activity of sphingosine kinase 1 (SphK1) increased with osteoclast differentiation, and its expression was enhanced in subchondral bone of mice with OA. The expression of Mmp3 and Mmp13 in chondrocytes was low upon stimulation with the secretome of Sphk1-lacking osteoclasts. Cartilage damage was significantly reduced in SphK1LysMCre mice, but not the synovial inflammation. Finally, intra-articular administration of sphingomab inhibited the cartilage damage and synovial inflammation. Conclusions Lack of S1P in myeloid cells and local S1P neutralization alleviates from osteoarthritis in mice. These data identify S1P as a therapeutic target in OA.The authors thank Alexandre Garcia for measurements of S1P. The work was supported by the Sybil SP7 European project and the “Fondation de l’Avenir”. JT and SV received grants from the Deutsche Forschungsgemeinschaft within the collaborative research center SFB1149.Peer reviewe

    Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors

    Get PDF
    Purpose: Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods: Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results: Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion: Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX

    Sphingosine Kinase 1 Regulates the Akt/FOXO3a/Bim Pathway and Contributes to Apoptosis Resistance in Glioma Cells

    Get PDF
    The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis

    CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice

    Get PDF
    CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment

    Hypertension Is Associated with Marked Alterations in Sphingolipid Biology: A Potential Role for Ceramide

    Get PDF
    Background Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function. Methods and Findings In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p Conclusions Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone
    corecore