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Abstract  

Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and 

viral species. As well as playing an integral structural role, SLs also act as potent signalling molecules involved 

in numerous cellular pathways and have been linked to many human diseases. A central SL signalling molecule 

is sphingosine-1-phosphate (S1P) whose breakdown is catalysed by sphingosine-1-phosphate lyase (S1PL), a 

pyridoxal 5’-phosphate (PLP) dependent enzyme that catalyses the cleavage of S1P to (2E)-hexadecenal (2E-

HEX) and phosphoethanolamine (PE). Here we show the pathogenic bacterium Burkholderia pseudomallei 

K96243 encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity 

to known eukaryotic and prokaryotic S1PLs. Using an established mass spectrometry-based methodology we 

show that recombinant S1PL2021 is catalytically active. Also, we used recombinant human fatty aldehyde 

dehydrogenase (FALDH) to develop a spectrophotometric, enzyme-coupled assay to detect 2E-HEX formation 

and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the x-

ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing the enzyme displays a 

conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest 

that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner. 
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Introduction 

Sphingolipids (SLs) are a diverse family of natural metabolites composed of a fatty acyl chain attached to a 

polar headgroup derived from L-serine that together form the sphingoid base core (1). Amphipathic in nature, 

SLs are important structural components of eukaryotic membranes that can associate with each other and with 

other membrane components (such as cholesterol and proteins) in regions called lipid rafts (2). As well as this 

structural role, SLs are now recognised as fundamental signalling molecules with a vast array of functions within 

cells. A ‘sphingodynamics’ model has been proposed to encompass both intra and extracellular signalling by 

all bioactive SL intermediates and their metabolites (3). Sphingosine-1-phosphate (S1P) is one such SL that 

regulates a plethora of physiological processes in humans by activating five different G-protein coupled S1P 

receptors (named S1PRs 1-5) (4). Perturbing the cellular levels of S1P can have serious consequences and has 

been linked to diseases such as cancer, diabetes, atherosclerosis, osteoporosis and neurodegeneration (5, 6). The 

balance between S1P and ceramide, another signalling molecule that often has opposing cellular effects to S1P, 

is governed by a ‘sphingolipid rheostat’ (6, 7). Remarkably, the pyridoxal 5′-phosphate (PLP) dependent 

enzyme sphingosine-1-phosphate lyase (S1PL) is the only known enzyme capable of irreversibly removing 

sphingoid bases from the SL pool. S1PL catalyses the retro-aldol like breakdown of S1P to 2E-

hexadecenaldehyde (2E-HEX) and phosphoethanolamine (PE) (Fig. 1). In eukaryotes the 2E-HEX is oxidised 

by fatty aldehyde dehydrogenase (FALDH, also known as ALDH3A2) to the hexadecenoic acid which links the 

SL and glycerol phospholipid metabolic pathways (8). Saba and Hannun were the first to clone a S1PL gene 

(also known as dpl1 and BST1) from Saccharomyces cerevisiae in 1997 (9) and subsequently the human 

homologue was characterised in 2000 (10). Since S1P plays a role in numerous diseases, enzymes in the S1P 

biosynthetic and degradative pathways are now seen as attractive drug targets(3). To that end, Novartis recently 

published results of a medicinal chemistry study that identified potent and specific inhibitors of human S1PL 

(11). 

Nearly all Gram negative bacteria such as Escherichia coli, Legionella pneumophila and Burkholderia 

pseudomallei contain lipopolysaccharides (LPS) as the major lipid component in their cell membranes. In 

contrast, the number of bacteria that produce SLs, examples being Sphingomonas spp.(12) and Myxobacterium 

spp. (13), is relatively small. However, it is interesting to note that many of the bacteria that are part of the 

human microbiome such as Bacteroides fragilis and Porphyromonas gingivalis also produce SLs (14–16). This 
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raises the interesting question of what is the function of bacterial SLs? Moreover, if such species contain an 

S1PL enzyme, what role does it play in bacterial metabolism in general and in the host-microbe interaction in 

particular? Recent studies have begun to address these questions. A bacterial S1PL homologue (LegS2) was 

identified in the intracellular human pathogen L. pneumophila (17, 18) and its role as a virulence factor in the 

pathogenic mechanism of this organism was explored. B. pseudomallei is an intracellular Gram negative 

pathogen that causes serious disease in humans and animals and as such, is classified by the Centre for Disease 

Control (CDC) as a category B biothreat agent. B. pseudomallei infection results in melioidosis, a febrile and 

potentially fatal disease which has a high mortality rate (19). To date, there have been no studies on SL 

metabolism in Burkholderia, so we began by investigating if this species contains any of the known SL 

metabolic enzymes and the recent work on the L. pneumophila focussed our attention on S1PL. We searched 

the B. pseudomallei K96243 genome (20, 21) and surprisingly, found two ORFs BPSS2021 and BPSS2025, 

whose gene products (S1PL2021 and S1PL2025 respectively) displayed high sequence identity to each other 

and moderate sequence conservation to confirmed S1PLs from bacteria, yeast and humans. We felt this unusual 

gene duplication merited further study, thus we set out to characterise the biochemical properties of these 

putative B. pseudomallei S1PLs as a prelude to investigating their role in the host-pathogen interaction.  

A number of assays that monitor S1PL activity have been reported in the literature. Many use either radioactive 

(e.g. 3H or 14C) or fluorescently-labelled (e.g. BODIPY) S1P analogues that generate labelled 2E-HEX aldehyde 

that can be detected by scintillation counting or fluorescent methods respectively (22–25). Other assays rely on 

the chemical derivatization of the HEX aldehyde product using chemical reagents, then applying mass 

spectrometry (MS) to quantify the amount of material (LC-ESI-MS/MS, GC-MS, HPLC-ESI-QTOF etc) (26–

28). Each approach has its merits with respect to sensitivity, limit of detection and the ability to work with 

purified enzyme, cell-free extracts or in whole cells. However, the drawbacks include the use of radioactive or 

non-natural substrates, limited throughput and the requirement for the extraction of the S1PL reaction products. 

First, using an established MS-based methodology we validated that the recombinant S1PL2021 displayed S1PL 

activity (26). Then, to further characterise the two closely-related B. pseudomallei S1PLs we generated a 

coupled spectrophotometric method for the convenient measurement of S1PL activity. This assay couples the 

activity of these new S1PLs with a recombinant form of human fatty aldehyde dehydrogenase (FALDH) that is 

part of the 2E-HEX catabolic pathway. In this way we were able to measure the production of 2E-HEX via the 
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reduction of the FALDH NAD+ cofactor to NADH. Furthermore, we determined the X-ray crystal structure of 

the S1PL2021 isoform at 2.1 Å and revealed that it has features in common with bacterial, yeast and human 

S1PL homologs. As well as reporting a convenient assay for S1PL activity, this study lays the foundation for 

future studies of the role of these novel S1PLs in the growth and pathogenicity of Burkholderia. 
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MATERIALS AND METHODS 

 

Materials 

Plasmids and E. coli competent cells for cloning were purchased from Novagen and New England Biolabs. The 

E. coli BL21 (DE3) competent cells used for protein expression were from Agilent. All chromatography 

columns were from GE Healthcare. Hotstart Pfu polymerase was from Agilent. Restriction enzymes were from 

New England BioLabs. Oligonucleotide primers were sourced from Sigma. Substrate S1P (CAS No. 26993-30-

6) was from Cayman Chemical Company. (2E)-hexadecenal (2E-HEX) was synthesized in house using a 

published method (29). All other buffers and reagents were sourced from Sigma. 

 

Sequence alignment and prediction tools 

Sequence data searches were performed using the BLAST suite of programs. Multiple sequence alignments 

were carried out using the Clustal series of programs (30) with structural modelling performed using the Phyre2 

server (31). To find S1PL homologs in the curated B. pseudomallei genome (www.burkholderia.com) the S1PL 

sequence from Symbiobacterium thermophilim (Uniprot: Q67PY4, PDB: 3MAU) was used to carry out a 

standard BLAST analysis. This recovered two hit genes, annotated as BPSS2021 (Uniprot: Q63IP8) and 

BPSS2025 (Uniprot: Q63IP4) with moderate sequence identities to the template (43 and 44% respectively). The 

encoded proteins, referred to as S1PL2021 and S1PL2025 share ~86% sequence identity. 

 

Cloning and expression of BPSS2021 (S1PL2021)  

Sequence analysis suggested that the BPSS2021 gene could be expressed from two start codons to give two 

open reading frames (ORFs). Therefore, PCR forward and reverse primers were designed based on the longest 

ORF (S1PL2021 N-EXT) using the following primers: 

S1PL2021 forward 5' CCATGGTGCGTTCGATCGC 3' 

S1PL2021 reverse 5' CTCGAGCGGACAGTCGGTAAACAG 3' 
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These primers incorporated NcoI and XhoI restriction sites giving a C-terminal six-histidine tagged fusion. A 

positive pGEM/ S1PL2021 N-EXT clone was digested and the isolated S1PL gene ligated into pET-28a. This 

gave a pET-28a/S1PL2021 N-EXT construct that expressed a protein of 500 aa. To clone the shorter ORF 

(S1PL2021), a forward primer was designed to initiate expression from an ATG start codon 60 base pairs 

downstream of the annotated start codon; 

S1PL2021 TRUNC forward: 5' CCATGGATCTCGAAGAAGG 3'. 

 

This PCR product was also cloned into pET-28a via a pGEM intermediate to give a pET-28a/S1PL2021plasmid 

encoding a protein of 480 aa. Plasmids pET-28a/S1PL2021 N-EXT and pET-28a/S1PL2021 were used to 

transform E. coli BL21 (DE3) competent cells and selection was carried out on agar plates containing kanamycin 

(30 µg/ml, LB/Kan30). Single colonies were used to inoculate 2x250 ml of LB/Kan30 broth and overnight 

cultures were grown at 37 °C with shaking at 250 rpm. The overnight cultures were used to inoculate 4l of fresh 

LB/Kan30 broth and grown to an A600 of 0.6-0.8. Protein expression was induced by addition of IPTG to a final 

concentration of 0.1 mM and growth was continued for 5 h at 30°C. Cells were harvested by centrifugation 

(Sorvall RC5-B centrifuge) at 5000 rpm for 15 minutes at 4°C. 

 

Cloning and expression of the S1PL2021 K271A mutant 

S1PL2021C mutants were prepared using the method of Naismith and Liu with primers were designed to 

introduce the relevant mutations (32). 

 

K271A forward 5’CGATACGCACGCGTTCGGCTACGGCCCGAAGGGC3’ 

K271A reverse 5’CGCCCTTCGGGCCGTAGCCGAACGCGTGCGTATCG3’  

 

PCR reactions were set up using Hotstart Pfu polymerase with completed reactions digested with Dpn1 enzyme 

to degrade template DNA. The post digestion mixture was transformed into high cloning efficiency cells 

(C2987- New England Biolabs) and spread on LB/Kan30 plates. Colonies were picked into LB/Kan30 and grown 

overnight with plasmid DNA extracted from cells using a Qiaprep miniprep kit (Qiagen). Sequencing was 
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performed to ensure mutagenesis had occurred. Expression of the S1PL2021 mutants mirrored that of the 

wildtype with the exception that induction temperature was reduced to 28°C.  

 

Cloning and expression of BPSS2025 (S1PL2025) 

The coding sequence for the BPSS2025 gene was amplified from B. pseudomallei K96243 chromosomal DNA 

using primers: 

 

S1PL 2025 forward: 5’ CCATGGATCTGGAGGAAGGCATCAG 3’ 

S1PL 2025 reverse 5’ CTCGAGAAGCGGGCAATCCGTGAAC 3’ 

 

to give an expressed protein sequence that aligned with the shorter S1PL2021 form described above. The 

purified PCR product was cloned into the pGEM T-Easy vector by TA ligation and positive clones were isolated 

and sequenced to confirm the identity of the gene. A positive pGEM/S1PL2025 clone was digested with NcoI 

and XhoI and the isolated S1PL gene ligated into pET-28a to give a C-terminally six His-tag protein of 480 aa. 

Expression of the gene and purification of the protein product was essentially identical to that for S1PL2021. 

 

Cloning and expression of full length and truncated FALDH 

The full length FALDH gene sequence (coding isoform 2) was purchased as a cDNA clone from Imagenes in a 

pOTB7 vector (Uniprot: P51648). Full length FALDH (isoform 1 and 2) is predicted to contain a C-terminal, 

membrane-bound helix thus using this as a template, full length and truncated versions for the FALDH isoform 

1 (the major natural form) coding sequences were amplified by PCR using forward and reverse primers with 

NdeI/NcoI and XhoI restriction enzyme sites. 

 

FALDH forward: 5’ CATATGGAGCTCGAAGTCCGGCGGGTCCGACAGG.  

FALDH reverse: 5’ CTCGAG(TCA)TAATATTCCGCCTTGACAAGCACAGCGGCTACAAT.  

Truncated FALDH reverse: 5’ CTCGAGATCCACCTTTGACTGGCTGTTGGG. 

 

The purified PCR products were cloned into pGEM, sequenced verified, and then cloned into pET-28a as 

described for the S1PL constructs as an N-terminally hexa-his tagged protein. pET-28a plasmids containing 
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both versions of FALDH (full length and C-terminal truncation) were used to transform E. coli BL21 (DE3) 

competent cells and selection was carried out on LB/Kan30 plates. Single colonies were used to inoculate 2x250 

ml of LB/Kan30 broth and overnight cultures were grown at 37 °C with shaking at 250 rpm. The overnight 

cultures were used to inoculate 4.5l of fresh LB/Kan30 broth and grown to an A600 of 0.6-0.8. Protein expression 

was induced by addition of IPTG to a final concentration of 0.1 mM and growth was continued for 5 h at 22 °C. 

Cells were harvested by centrifugation (Sorvall RC5-B centrifuge) at 5000 rpm for 15 minutes at 4°C. 

 

General procedure for the purification of six his-tagged enzymes (S1PL2021, S1PL2025 and FALDH) 

All purification steps were carried out at 4°C. All buffers contained 2 0mM HEPES (pH 7.5), 400 mM NaCl 

and 10% glycerol. 100 µM PLP was included in the buffer for S1PL isolation. Binding buffers also contained 

10 mM imidazole and one EDTA-free protease inhibitor tablet (Roche). Wash buffer contained 30 mM 

imidazole with elution buffer containing 300 mM imidazole. Cell pellets (~4 g) were resuspended in Ni-NTA 

binding buffer 10:1 (v/w). Cells were lysed by sonication (Soniprep 150) for 15 cycles (30s on, 30s off) on ice. 

In the case of full length FALDH, 0.1% N-lauroylsarcosine was added to aid solubilisation of the recombinant 

protein. The lysed cell suspension was centrifuged at 20,000 rpm for 30 minutes. The cell-free extract was 

filtered (0.45µm syringe filter) before addition of 2 ml Ni-NTA resin (Qiagen) pre-equilibrated with binding 

buffer. Binding was carried out by rotating the suspension at 4°C for 1 hour. The resin was collected by gravity 

flow in a fritted plastic disposable column, washed with 30 ml wash buffer, and the bound protein eluted with 

5 ml elution buffer. Fractions were analysed by SDS PAGE and the 300 mM imidazole eluate loaded onto a 

pre-equilibrated HiPrep 16/600 Superdex S-200 size exclusion column. Recombinant protein was eluted at 

a flow rate of 1 ml/min in buffer. The molecular weights of S1PL or FALDH were calculated from a calibration 

curve using known molecular mass standards (GE Healthcare). The purity of the recombinant proteins were 

analysed by SDS PAGE. The fractions were pooled and protein concentration was calculated by A280 using the 

relevant extinction coefficients as determined using the Scripps Protein Calculator. 

 

S1PL UV-visible spectroscopy 
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All UV-visible spectra were recorded on a Cary 50 spectrophotometer (Varian) and analysed using Cary WinUV 

software (Varian). S1PL enzymes (15-20 µM) were maintained in holo-form by dialysing against buffer 

containing 20 mM HEPES (pH 7.5), 400 mM NaCl, 10% glycerol and 100 µM PLP. Prior to spectroscopic 

measurements excess PLP was removed using a PD-10 desalting column (GE Healthcare). A stock solution of 

S1P (1 mg/ml) was prepared in 1% triton X-100 and sonicated. A stock solution of phosphoethanolamine (PE, 

100 mM) in water. S1P and PE were added to the enzymes and scans recorded between 300-500 nm at 

appropriate time intervals. 

 

Assay of S1PL activity by LC/MS 

The activity of S1PL was determined by detecting the formation of the (2E)-hexadecenal semicarbazone (2E-

HEX SC) product by LC/MS using the method of Berdyshev et al (26). Briefly an enzyme stock solution was 

prepared by dialysing 10 µM S1PL in 20 mM HEPES (pH 7.5), 400 mM NaCl, and 100 µM PLP. A 2.6 mM 

S1P stock was prepared with additional sonication. Using these stocks an enzyme assay was prepared to a final 

volume of 500 µl containing 6 µM S1PL and 0.26 mM S1P substrate in a reaction buffer containing 20 mM 

HEPES, 400 mM NaCl and 0.1 mM PLP. Control assays were prepared accordingly and all samples were 

incubated for 20 minutes at 37°C with methanol then added to stop the reaction. The 2E-HEX was extracted 

and the semicarbazone derivative produced by heating reaction aliquots with 0.2 ml of 5 mM semicarbazide 

hydrochloride in methanol containing 5% formic acid at 40°C for 2 h. The semicarbazones were analysed by 

mass spectrometry with samples injected via an Agilent 1200 HPLC with interfaced auto-sampler (Agilent 

Technologies). Analysis was in ESI –positive mode on a micro-TOF2 (Bruker Daltonics) using a standard ESI 

source. Ion source conditions were as follows; the ESI voltage was held at 4.5 kV at a temperature of 200°C 

with a Hexapole RF of 70V peak to peak and skimmer 2 potential of 20V. 

 

Assay of FALDH activity using UV-vis spectroscopy 

The soluble version of FALDH, lacking its C-terminus, was assayed to determine its suitability as a coupling 

enzyme with S1PL. This was done by monitoring the formation of NADH in the presence of a synthetic 2E-

HEX substrate. Reaction aliquots were prepared to a final volume of 500 µl containing 1 mM NAD+, 500 nM 
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FALDH in a reaction buffer containing 20 mM HEPES (pH 7.5), 400 mM NaCl. Reactions were monitored by 

UV-Vis at 340nm for 30 minutes at 37°C. Subsequent assays were performed in a Synergy HT plate reader and 

the data plotted using GraphPad (non-linear regression analysis) to gain kinetic data for FALDH. The reaction 

was linear over ~5 minutes and the lower limit of detection was ~4 µM 2E-HEX. 

 

S1PL:FALDH coupled-enzyme assay  

S1PL enzyme assays were prepared to a final volume of 500 µl containing 6 µM S1PL, 1 mM NAD+, 500 nM 

FALDH in a reaction buffer containing 20 mM HEPES (pH 7.5), 400 mM NaCl and 0.1 mM PLP. The reaction 

was initiated by the addition of S1P from the stock solution to give a final concentration of 400 µM. Control 

samples lacking enzyme or substrate were also prepared. Reactions were monitored by UV-Vis at 340nm for 

30 minutes at 37°C on a spectrophotometer. For kinetic data the assays were then transferred to a Synergy HT 

plate reader and these contained 6 µM S1PL, 1 mM NAD+, 500 nM FALDH in a reaction buffer containing 20 

mM HEPES (pH 7.5), 400 mM NaCl and 0.1 mM PLP (final well volume 150 µl). This time substrate S1P (0-

175 µM) was prepared in 1% triton X-100 and added to separate reaction aliquots in triplicate. Reactions were 

monitored at 340nm for 30 minutes at 37°C. Kinetic data was fit using GraphPad as described previously. 

 

X-ray crystallography 

S1PL2021 at 6 mg/ml was crystallised by hanging-drop vapour diffusion at 18°C. Crystallisation experiments 

were set up in 96 well MRC plates with commercially available screens from Molecular Dimensions Limited 

with 100 nl drops of protein and 100 nl well solution and equilibrated against 70 µl of well solution. Crystals 

grew in a well solution of 20% (v/v) polypropylene glycol 400, 10% (v/v) 1-propanol (Molecular Dimensions 

MIDAS screen). Crystals were cryoprotected with mineral oil and then flash cooled by immersion in liquid 

nitrogen. Datasets were collected on beamline I03 at the Diamond Light Source (Didcot, UK) at 100K using a 

Pilatus 6M detector. Diffraction data were integrated and scaled using XDS (33) and symmetry related 

reflections were merged with Aimless (34). The resolution cut off used for structure determination and 

refinement was determined based on the CC1/2 criterion proposed by Karplus and Diederichs (35) The structure 
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of S1PL2021 was determined by molecular replacement using a model based on PBD code: 3MAD, modified 

to match the target sequence using Chainsaw (36). A single solution comprising two molecules in the 

asymmetric unit was found using Phaser (37). The initial model was rebuilt using Phenix.autobuild (38) 

followed by cycles of refinement with Phenix.refine (39) in the Phenix programme suite (40) and manual 

rebuilding in Coot (41) The final model was refined with isotropic B-factors and the model was validated using 

MolProbity (42) Structural superimpositions were calculated using Coot. Crystallographic figures were 

generated with PyMOL (43)  
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RESULTS 

Identification of putative Burkholderia S1PLs by BLASTp search 

BLASTp hits for novel bacterial S1PLs were identified in the genomes of various species of Burkholderia by 

using the 507 amino acid sequence of the confirmed bacterial S1PL from S. thermophilum, StS1PL 

(Uniprot:Q67PY4)  as the query sequence (20, 44). Several putative S1PLs with >40 % sequence identity were 

identified in the known human pathogen B. pseudomallei and in B. thailandensis, a non-pathogenic model 

organism (45). Strikingly, all representatives of these species each encode two putative S1PLs, with the two 

genes located in close proximity within each species. This is exemplified by B. pseudomallei strain K96243 

which contains two genes in close proximity with locus IDs of BPSS2021 (S1PL2021) and BPSS2025 

(S1PL2025) that display 86.3 % amino acid sequence identity between them and 43.9 % and 43.1 % identity 

respectively to the confirmed StS1PL (supplementary Fig. S1 and S2). These two predicted S1PLs also 

contained the conserved residues involved in binding the PLP cofactor (44). 

To characterise the recombinant forms of these putative S1PLs we began by expressing S1PL2021 in E. coli, 

but the ORF displayed two potential start codons. The sequence identity between S1PL2021 with StS1PL was 

low at the N-termini (supplementary Fig. S2) with the pairwise alignment beginning at M47 of StS1PL. This 

aligns well with a conserved MDLEEG motif found in S1PL2021 and the other S1PL homologs in Burkholderia 

species and two clones were prepared; one that began at the conserved MDLEEG motif (named S1PL2021) and 

another that expressed an extended construct (named S1PL2021 (N-EXT)).  

 

Purification and characterisation of S1PL2021 and S1PL2021 N-EXT. 

Recombinant S1PL2021 was expressed in E. coli from plasmid pET-28a as a hexa-histidine (6His) C-terminal 

fusion. A standard purification procedure using immobilised nickel affinity (IMAC) and size-exclusion 

chromatography (SEC) yielded milligram amounts of pure recombinant protein S1PL2021 that was 

predominantly dimeric in solution (supplementary Fig. S3A and S3B). A similar strategy was used to prepare 

recombinant S1PL2025 (supplementary Fig. S3C and S3D). Analysis of S1PL2021 suggested that PLP was 

bound to the protein since the UV-visible spectrum displayed absorbances at ~330 nm and ~420 nm that are 

characteristic of PLP-dependent enzymes (supplementary Fig. S3E). A similar PLP binding spectrum was 
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observed with S1PL2025 (supplementary Fig. S3F). In contrast, the alternative construct, S1PL2021 N-EXT 

purified in an identical manner to the S1PL2021 but failed to display any PLP binding (supplementary Fig. 

S3G). These results confirmed that these truncated versions of S1PL2021 and S1PL2025 bound PLP and these 

forms of the protein were used throughout the study.  

 

Substrate and product binding to S1PL2021. 

When the substrate S1P (100 µM) was added to the PLP-bound form of S1PL2021 (15 µM) and the resulting 

mixture analysed by UV-Vis spectroscopy, the peak at 420 nm decreased along with an increase in the 330 nm 

region over a period of 30 mins suggesting that S1P is binding to S1PL2021 (Fig. 2A). Addition of the product 

PE (10 mM) to the protein also showed changes in the UV-visible region (maxima at ~320 nm) with an 

additional blue shift to ~395 nm, although this occurred at a much slower rate than for S1P (Fig. 2B). According 

to the putative S1PL mechanism proposed by Bourquin et al (44) these spectroscopic changes are due to the 

formation of the PLP-S1P and PLP-PE external aldimine intermediates that are bound to S1PL (supplementary 

Fig. S4). We carried out similar UV-vis analysis of the binding of S1P and PE to the S1PL2025 enzyme (Fig. 

2C and 2D). The changes in the UV-vis spectra were similar when we compare the incubation of S1PL2021 and 

S1PL2025 with S1P. In contrast, when we compared the spectra from the incubations of the product PE with 

both enzymes, we did not observe the 420 to 395 nm shift in the S1PL2025 enzyme and the changes took longer 

to occur compared with the S1PL2021 enzyme. These combined data suggest that, despite having highly similar 

amino acid sequences (86 %), the two S1PL isoforms display small differences in their cofactor, substrate and 

product binding that deserves further investigation. We also used UV-vis spectroscopy to show that S1PL2021 

could also bind the non-phosphorylated substrate D-erythro sphingosine (Fig. 2E). Addition of this substrate 

led to similar changes in the PLP region of the UV-vis spectrum that were observed for S1P, although this took 

significantly longer (~4 hours). 

 

Confirmation that S1PL2021 is an S1PL 

To determine if the B. pseudomallei S1PL2021 and S1PL2025 displayed S1PL activity we used an established 

mass spectrometry-based method developed by Berdyshev and colleagues that has been used to detect S1PL 



15 
 

activity in mammalian liver microsomes (26). This method relies on extracting the 2E-HEX aldehyde product 

of the S1PL reaction and forming a stable semicarbazone derivative (2E-HEX SC, [M+H]+ C17H34N3O+, 

predicted m/z = 296.3 Da, observed m/z = 296.3 Da) using semicarbazide hydrochloride (Fig. 3A). Recombinant 

S1PL2021 was incubated with 260 µM S1P and aliquots taken for semicarbazone derivitisation. Additional 

positive and negative controls were prepared and treated in an identical manner and the results analysed using 

ESI-MS (Fig. 3B-E). The positive control used previously synthesized 2E-HEX and gave a single peak at 296.3 

Da matching the expected semicarbazone derivative (Fig. 3B). This peak was absent in the no enzyme control 

with the S1P substrate ([M+H]+, predicted C18H39NO5P+ m/z = 380.2 Da, observed m/z = 380.4 Da, Fig. 3C). 

The reaction catalysed by S1PL2021 resulted in a signal with m/z = 296.3 Da indicating the production of the 

2E-HEX SC species and confirming S1PL2021 displayed S1PL activity (Fig. 3D). In contrast, the no substrate 

control lacked both the above peaks (Fig. 3E).  

 

FALDH coupled assay suitability/optimisation 

The ESI-MS method confirmed that S1PL2021 displays S1PL activity, therefore we went on to develop 

a convenient continuous spectroscopic assay in order to perform steady-state kinetic analysis of S1PL. We took 

advantage of the activity of fatty aldehyde dehydrogenase (FALDH), the next enzyme in the SL metabolic 

pathway (Fig. 1). The human FALDH (also known as ALDH3A2) has been cloned and recombinant enzyme 

has been isolated from E. coli by Lloyd et al. (46) so this presented an attractive candidate for the development 

of a coupled assay. A commercially available cDNA clone (Source BioScience, product code 

IRAUp969B0810D in plasmid pOTB7) was used to construct an expression clone of the full length FALDH 

protein (isoform 1), however, in our hands, this initial construct was insoluble (data not shown). A sequence 

alignment between human FALDH and rat ALDH3A1, which lacks a hydrophobic C-terminal transmembrane 

region, guided the preparation of a second, truncated clone (supplementary Fig. S5). This shorter variant 

expressed well in E. coli and we were able to isolate mg quantities of recombinant His-tagged human FALDH 

(supplementary Fig. S6). By monitoring aldehyde substrate-dependent, NADH formation at 340 nm we 

established that the fully saturated substrates, hexadecanal and tetradecanal and, most importantly, the 

unsaturated 2E-HEX, were substrates for this recombinant FALDH (Fig. 4A). Using varying 2E-HEX substrate 

concentrations (0-260 µM) the reaction was linear over the first 3 minutes and the limit of detection was 
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determined to be ~4 µM 2E-HEX (supplementary Fig. S7A). We performed Michaelis Menten analysis and 

determined the kinetic values for 2E-HEX with a KM = 19.4 ± 3.2 µM and kcat = 0.22 ± 0.01 s-1 recorded. (Fig. 

4B, Table 1). The active FALDH was then coupled to both S1PL2021 and S1PL2025 in the presence of S1P 

and NAD+ at 30°C to determine the kinetic constants of both S1PL enzymes. The initial reaction rates were 

linear over a S1P concentration range of 0-175 µM. Therefore S1PL activity could be quantified in a continuous 

fashion (down to a S1P substrate concentration of ~10µM) (supplementary Fig. S7B and S7C) and allowed the 

determination of the kinetic constants of both B. pseudomallei S1PLs. The values for each are as follows; 

S1PL2021 (KM = 48.2 ± 9.4 µM and kcat = 0.015 ± 0.003 s-1) and S1PL2025 (KM = 50.2 ± 8.3 µM and kcat = 

0.008 ± 0.0005 s-1) (Fig. 4C and 4D, Table 1). Thus this new assay offered a convenient way of measuring the 

activity of recombinant S1PL. Based on the S1PL sequence alignment residue K271 of S1PL2021 is predicted 

to bind the essential PLP cofactor (supplementary Fig. S2). A S1PL2021 K271A mutant was prepared and when 

used in the coupled assay this variant was essentially inactive in comparison to the wild type enzyme (Fig. 4E). 

We also used the assay to determine if S1PL2021 used D-erythro sphingosine as a substrate and found that it 

displayed ~8% activity compared with S1P (Fig. 4F). 

 

Structural characterisation of S1PL2021 

The further characterise the Burkholderia pseudomallei S1PL enzymes we subjected S1PL2021 to 

crystallisation trials using commercially available screens. Crystals with a monoclinic morphology were grown 

in 20 % (v/v) PEG400, 10 % (v/v) 1-propanol. Diffraction data on cryocooled crystals were collected on a single 

crystal at Diamond Light Source (beamline I03) to a maximum resolution of 2.1 Å in space group P1 21 1. The 

structure of S1PL2021 was determined by molecular replacement using a monomer of the S. thermophilum 

S1PL structure as the template (PDBID: 3MAD). The final refined model contains a dimer of S1PL with the 

PLP cofactor present as an internal aldimine with residue K271 in each chain (Fig. 5A). There was no clear 

electron density present for residues before L10; between residues H430 and A455; and for the His6 tag after 

residue P472 at the C-terminus; residues in these regions were omitted from the final model.  

The S1PL2021 structure conformed to the typical type I PLP dependent fold seen in the group II decarboxylase 

subfamily (11, 44). The overall architecture of the protein closely matches homologous structures, with excellent 
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overall alignment of S1PL2021 with published structures (supplementary Fig. S8A, supplementary Table S1). 

The structure has an N-terminal domain (residues 10-55), which is primarily involved in dimerization; a large 

cofactor-binding central domain (residues 56-320); a short C-terminal domain (residues 321 – 430); and a C-

terminal extension (431 – 471) (Fig. 5A). The latter domain is partially disordered, with the region between 

residues 431 and 455 not visible in the experimental electron density; this region sits close to the cofactor and 

substrate-binding region and may change conformation on ligand binding.  

The cofactor-binding site at the dimer interface shows excellent electron density for the PLP cofactor, which 

was found to bind to K271 via a Schiff base as an internal aldimine (Fig. 5B). Coupled with the high 

conservation of active site residues with other members of the S1PL family across bacteria, yeast and human 

(supplementary Fig. S8B, supplementary table S2), our structural data confirm the assignment of S1PL2021 as 

a member of the sphingosine-1-phosphate lyase family (EC number 4.1.2.27) and given the high sequence 

identity of S1PL2025 (86 %) suggest that this is also a S1PL family enzyme. The cluster of residues involved 

in PLP binding are highly conserved across the members of the S1PL family, with these residues adopting the 

same orientation in published crystal structures (supplementary Fig. S8B). Analysis of the active site shows that 

the pyridine ring is held in place between C235 and H159 with π-stacking interactions to the latter residue; the 

nitrogen of the pyridine group forms a hydrogen bond to D233 (fig. 5B). The PLP phosphate group forms 

hydrogen bonds with the sidechain of H270 and the backbone nitrogens of G126, T127, and S313 from the 

partner chain. The K271 chain is held in place through a hydrogen bond between D268 and the sidechain 

nitrogen that forms the Schiff base with PLP.  

The dimer observed in the crystal structure of S1PL2021 is the native form of this protein (Fig. 5A), as the 

cofactor-binding site and ligand-binding funnel is formed between the two monomers (supplementary Fig. S9A 

and S9B). The dimerization interface buries nearly 50 % of the total surface area of each monomer with a total 

buried area of 6430 Å2; the interface is stabilised by 52 hydrogen bonds and 32 salt bridges. The observation 

that S1PL2021 is unable to bind PLP when expressed in the full-length form as annotated in the genome is 

explained by the fact that any significant extension of the N-terminus of the structure from that seen in the 

crystal structure would potentially occlude the substrate binding funnel and PLP binding site (supplementary 

Fig. S9A). The substrate-binding funnel of S1PL2021 is formed between the two monomers, with one monomer 

providing a primarily positively charged surface and the other a negatively charged surface (supplementary Fig. 
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S9B). The missing region of the protein that forms the C-terminal extension is likely to play a role in substrate 

recognition given its position over the funnel and its inherent flexibility in this structure. 
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DISCUSSION 

Sphingolipids and ceramides have been shown to be important players in various eukaryotic cell 

functions. The amino alcohol core structure of all SLs is built from L-serine and a long chain fatty acid and 

further elaborated by a series of enzymes that increase their complexity by phosphorylation, oxidation and 

acylation (1). Cells maintain a balance of SLs and ceramides via highly regulated synthetic and metabolic 

pathways whose control mechanisms are still not fully understood. Perturbation of this balance has now been 

linked to a number of diseases such as cancer, atherosclerosis, autoimmunity and infection (5, 6). A key 

regulatory mechanism involves the breakdown of the potent signalling molecule S1P by S1PL and S. cerevisiae 

has been a useful model organism where the pathways for de novo biosynthesis, recycling and degradation of 

SLs have been delineated (47). Indeed, the first S1PL gene (dpl1) was characterised in S. cerevisiae by Saba 

and colleagues and they showed that a Dpl1 mutant strain was not only highly sensitive to exogenous 

sphingosine but also accumulated intracellular S1P upon exposure to sphingosine (9). In contrast to higher order 

organisms, relatively few studies have been carried out to investigate the role of SLs biosynthesis and 

metabolism in bacterial species. Of these, it is interesting to note that microbes from the human microbiome – 

P. gingivalis from the oral cavity and the gut commensal Bacteroides fragilis make SLs with unusual structural 

features (14–16). Their roles in bacterial metabolism, as well as their interaction within the host environment, 

are currently under investigation (48) .  

Burkholderia are a group of interesting bacterial species that can cause life-threatening infections and 

have a reputation as being highly resistant to antibiotics (49–51) They appear to lack the ability to synthesise de 

novo SLs since analysis of their genomes suggest that the biosynthetic genes are absent. We were therefore 

interested to discover that B. pseudomallei K96243 encodes two highly homologous ORFs that display moderate 

(~40%) sequence identity to the S. thermophilum S1PL query sequence (supplementary Fig. S1 and S2). The 

two ORFs, BPSS2021 and BPSS2025 (annotated as decarboxylases in the genome) also display 86 % sequence 

identity to each other. Since a more detailed sequence and structural analysis revealed that both ORFs contained 

conserved residues important for binding the PLP cofactor and enzyme catalysis we hypothesised that these 

genes encode S1PLs. Therefore, we cloned, expressed and purified recombinant forms of both S1PLs and UV-

vis analysis showed that they bound the PLP cofactor (supplementary Fig. S3). Monitoring the changes in the 

UV-vis spectrum of PLP-dependent enzymes can be a useful tool to study how substrates, products and 
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inhibitors interact with these enzymes. The PLP binding region of holo-S1PL2021 showed changes upon 

addition of 100 µM S1P with an initial sharp rise in the 330 nm region, followed by a slower increase at this 

wavelength (Fig. 2A). At the same time there was a decrease in the absorbance at 420 nm. Addition of the 

product PE to S1PL2021 led to the appearance of a peak at 320 nm and a decrease at 420 nm with a shift to 395 

nm (Fig. 2B). We carried out the same substrate and product binding analyses with S1PL2025 (Fig. 2C and 2D) 

and the general trend was similar, unsurprising as they are 86% identical. In contrast, in their studies with the 

S. thermophilum S1PL, Bourquin and colleagues observed the transient appearance of two peaks (403 nm and 

420 nm) which they tentatively assigned as the PLP-S1P and PLP-PE external aldimines in the putative S1PL 

reaction mechanism (intermediates 3 and 7 respectively in supplementary Fig. 4). These peaks appeared 

immediately upon S1P addition, and then reduced over 5 minutes until the spectrum resembled that of the 

starting PLP-bound, holo- form of the enzyme. Moreover, they noted that the yeast S1PL UV-vis spectrum did 

not show any changes upon S1P addition and they concluded that this enzyme was inactive. Our mass 

spectrometry and FALDH coupled assay (described below) prove both Burkholderia S1PL2021 and S1PL2025 

are active. Given that the S1PLs did not regenerate the holo- form spectrum, it suggests differences between the 

Burkholderia S1PLs and the S. thermophilum S1PL with which they share ~40% sequence identity. Our results 

could indicate the slow release of products (PE or 2E-HEX) or the build up of a hitherto uncharacterised 

intermediate.  

The ability to measure S1PL activity using a convenient method would help expand structural and 

mechanistic studies of the enzyme in all organisms. Since the first discovery of S1PL activity in mammalian 

cells by Stoffel and colleagues, (52) who used a 14C-labelled substrate, a number of S1PL assays have been 

developed that use radioactive, fluorescent and fluorogenic substrates and substrate analogues. One of the 

earliest methods used incorporation of 3H labels into the S1P substrate and thin layer chromatography (TLC) 

and liquid scintillation counting (LSC) analysis of the products. This was applied to the study of the S1PL 

enzyme in rat liver and values of KM = 9 µM and Vmax = 0.082 pmol/min/µg were determined (22). Bandhuvula 

and colleagues synthesized a fluorescent, NBD-labelled S1P homolog (S1P-C18NBD) that was used to analyse 

the human S1PL in HEK293 cells and gave values of KM = 14.6 µM and Vmax = 3.4 x 10-4 pmol/min/µg (23). 

These authors then prepared a more stable fluorescent S1P-C14 Bodipy analogue that was used to analyse the 

human enzyme again in HEK293 cells that gave values (KM = 35 µM, Vmax = 5.1 x 10-4 pmol/min/µg) in good 
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agreement with the previous study (24). An alternative, clever strategy retained the phosphorylated amino 

alcohol structure of the natural S1P substrate and combined it with an ether-linked, coumarin-based reporter to 

generate a substrate that, upon S1PL-catalysed cleavage, breaks down by β-elimination to a highly-fluorescent 

umbelliferone product. Although highly sensitive, this non-native substrate displays a high KM (152 µM) for the 

S1PL in mouse embryonic fibroblasts (MEFs) and the fluorescence was significantly reduced in the presence 

of Triton-X100 that is used to solubilise the S1P (25). Mass spectrometry (MS)-based techniques have also been 

developed that involve the derivitization of the 2E-HEX aldehyde product with reagents (usually hydrazides) 

that improve ionization efficiency. The first MS-based method was developed by Berdyshev and colleagues to 

characterise the S1PL activity in mouse liver microsomal extracts (KM = 5.7 µM, Vmax = 0.171 pmol/min/µg) 

(26). A similar gas chromatography/electron ionisation (GC/EI) MS method used pentafluorobenzoyloxime 

derivitization of the 2E-HEX to analyse the S1PL in MEFs (KM = 6 µM, Vmax = 0.374 pmol/min/µg) (27). 

Novartis have recently identified the human S1PL as an attractive target for the development of therapeutics 

and developed a high throughput, MS-based method to screen for novel inhibitors (11). By using 

nicotinylhydrazide (Isoniazid) modification of the 2E-HEX they obtained the first data on purified, recombinant 

human S1PL (KM = 5.2 ± 0.9 µM). Most recently, Suh and colleagues developed a stable isotope dilution method 

using an internal D-labelled standard to also determine the values for recombinant human S1PL in good 

agreement with the value determined by Novartis (KM = 4.67 µM, Vmax = 2.6 pmol/min/µg) (53). 

We decided to use an MS-based method to confirm that the recombinant B. pseudomallei S1PL2021 

isoform catalysed the degradation of S1P to 2E-HEX (Fig. 3). Since this end-point method involves a number 

of liquid handling steps (derivitization, organic extraction) and requires an internal standard, we sought to 

develop a convenient, continuous spectroscopic assay that could be used for S1PL analysis. Our choice of 

coupling enzyme was informed by our knowledge of the SL degradative pathway (Fig. 1). In mammals, the 2E-

HEX aldehyde product of the S1PL enzyme is oxidised to the acid by a fatty aldehyde dehydrogenase (FALDH, 

also known as ALDH3A2, UniProt Code: P51648) in an NAD+-dependent manner that can be monitored at 340 

nm. Human FALDH has been the subject of various studies since it has been linked to the SL-metabolic disease 

Sjögren–Larsson syndrome (8). Previously, recombinant, full-length human FALDH had been isolated by Lloyd 

et al who showed that extraction of the enzyme from E. coli required the use of the anionic detergent N-

lauroylsarcosine (46). This enzyme displays broad substrate specificity and could use saturated fatty aldehydes 
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of varying chain lengths (from C5 to C18) with KM values in the low µM range (4-35 µM) and kcat values (~1 s-

1) that would deem it suitable as a coupling enzyme. We prepared recombinant, N-terminally His-tagged human 

FALDH by relatively straightforward, soluble expression in E. coli once we had removed the C-terminal 36 

residues that contained a predicted potential transmembrane (TM) domain (supplementary Fig. S5). Of note, 

Lloyd et al did not prepare 2E-HEX but did show that the FALDH used the commercially available, unsaturated 

cis-11-hexadecenal as a substrate. We found that our truncated, recombinant FALDH was not only active with 

the saturated C14 and C16 fatty aldehydes but, more importantly, also used the synthetic 2E-HEX as a substrate 

and we determined kinetic values (KM = 19.4 ± 3.2 µM and kcat = 0.22 ± 0.01 s-1) that suggested that it would 

make a suitable coupling partner for the determination of S1PL activity (Fig. 4A and B). 

During our work a detailed x-ray structure and mechanistic study of the human FALDH was published 

with a view to understanding the substrate specificity of the enzyme and the impact of mutations that cause SLS 

(54). In this paper the FALDH construct contained an N-terminal streptavidin affinity tag and, in comparison to 

our truncation, only removed the C-terminal 22 amino acids, the minimum based on the proposed TM region. 

This construct was catalytically active with C8, C12 and C16 saturated aldehyde substrates in the presence of 

0.1% Triton X100 but they noted that removal of a 40 amino acid section resulted in a drastic reduction in 

activity with the longer acyl-chain length substrates. The x-ray structure of the FALDH (PDB: 4QGK, 2.1 Å 

resolution) revealed that, as well as being involved in the TM interaction, the C-terminal domain also contained 

a gatekeeper helix that is proposed to be involved in substrate specificity (supplementary Fig. 5B). This structure 

allowed us to rationalise how our truncation of the C-terminal hydrophobic element increased the solubility of 

our FALDH construct whilst retaining enough of the helix to maintain good activity towards long acyl chain 

substrates, crucially including 2E-HEX (supplementary Fig. S5A and S5B). We combined our FALDH with the 

purified Burkholderia S1PL2021 and S1PL2025 enzymes in the presence of PLP, NAD+ and S1P solubilised in 

Triton X100. We observed that the assay was linear over a practical substrate range (0-175 µM) and determined 

kinetic values for S1PL2021 (KM = 48.2 ± 9.4 µM and kcat = 0.015 ± 0.003 s-1) and S1PL2025 (KM = 50.2 ± 8.3 

µM and kcat = 0.008 ± 0.0005 s-1) (Fig. 4C and Fig. 4D, Table 1). Since both isoforms display such high sequence 

identity it is not surprising that they display similar KM values for S1P, however we noted that the S1PL2025 

was 50% slower than the S1PL2021 isoform. Although we used this assay to only study the Burkholderia S1PLs, 

we think that this convenient FALDH-coupled method will be of use to those working with S1PLs from other 
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organisms (e.g. yeast and human). It will be interesting to determine if it can also be applied not only to purified 

recombinant enzymes and HTP S1PL inhibitor screens, but also whole cell lysates. 

To explore the structures of these novel Burkholderia S1PLs we used our optimised expression system 

for S1PL2021 to prepare crystals that diffracted to 2.1 Å. Using the S. thermophilum S1PL structure (PDB: 

3MAD) as a template for molecular replacement the structure refined well and the enzyme displayed the 

canonical Type I fold of the PLP superfamily of enzymes (Fig. 5A, suppl. Fig. 8A) (55). Furthermore, it belongs 

to the group II decarboxylase subfamily which is typical of S1PLs from other species. The monomer has a three 

domain architecture, a short N-terminal domain, a large central domain that binds the well resolved PLP cofactor 

bound as an internal aldimine/Schiff base to K271, and an extended C-terminal domain (Fig. 5A). As well as 

K271, comparison with other S1PLs identifies conserved residues involved in PLP binding; C235 and H159 

binds to the pyridine ring, residues G126, T127, H270, S313* (from the other subunit) coordinate the phosphate 

group and D233 is involved in salt bridge formation of the pyridine nitrogen (Fig. 5B, supplementary table S2). 

An overlay of all the well-refined structures of S1PLs in the PDB with PLP and/or Pi bound shows that the 

S1PL2021 active site architecture is well conserved (Suppl. Fig. 8B, supplementary table S2). Given its role in 

anchoring the PLP cofactor it is not surprising that mutation of the conserved K271 drastically reduces S1PL 

activity to 2% when compared to wild type (Fig. 4E). Both S1PLs showed activity with S1P as a substrate but 

we also wished to explore if the phosphate of S1P was required for activity. Since we had observed binding of 

D-erythro sphingosine to S1PL2021 (Fig. 2E) by UV-vis spectroscopy, it was interesting to find that this 

isoform did catalyse breakdown of this non-phosphorylated sphingolipid (~8% activity compared to S1P, Fig. 

4F). Thus it appears that the Burkholderia S1PLs display some substrate promiscuity and may be able to break 

down a range of both phosphorylated and non-phosphorylated sphingolipids. In future it will be interesting to 

carry out a comprehensive substrate analysis with these enzymes and explore their specificity with respect to 

acyl chain length, C1 head group, the oxidation state at C4-C5 (sphingosine/sphinganine) and the C2-C3 

stereochemistry (erythro/threo). 

Although the crystal structures of S1PLs from S. thermophilum, S. cerevisiae, human and L. 

pneumophila have been solved the exact nature of substrate binding and enzyme catalysis are still unclear since 

the structure of a S1P-bound complex has not been determined (44, 56, 57). For example, in the putative 

mechanism, the active site base that deprotonates the S1P hydroxyl leading to the retro-aldol like cleavage of 



24 
 

the substrate has not been identified (supplementary Fig. S4). Bourquin et al described a S. thermophilum 

S1PL:PLP-PE product complex as well as a S1PL:PLP internal aldimine with a phosphate ion bound and 

together these structures hinted at the residues involved in binding the phosphate of S1P. Despite screening 

numerous conditions we were unable to trap the wild type S1PL2021:PLP-S1P external aldimine complex since 

we assume the enzyme catalyses the rapid break down of the S1P. We recently used mutagenesis of an active 

site lysine that allowed us to capture the PLP-dependent enzyme serine palmitoyl transferase (SPT) bound to 

the inhibitor myriocin (58). We used a similar strategy to screen crystals of the S1PL2021 K271A mutant for 

S1P binding but this has so far failed to yield a structure (data not shown). To date the exact residues involved 

in binding the S1P acyl chain are still not known but an overlay of all available S1PLs suggests the presence of 

hydrophobic funnel on the surface which leads down into the active site (supplementary Fig. S9). It is interesting 

that one of the differences between the two enzymes is at position 401; this is a histidine in S1PL2021 and 

glutamine in S1P2025. This change could contribute to the 50% difference in activity between the two isoforms. 

In future, swapping the histidine at position 401 for glutamine (and vice versa) between the two forms, as well 

as mutating other potential residues should identify those involved in substrate binding and catalysis. Our 

continuous S1P assay will be useful for screening the activity of these and any other mutants. 

Since human S1PL has recently been identified as an attractive target for drug discovery, both Novartis 

and AbbVie have undertaken medicinal chemistry programmes to identify potent inhibitors (56, 59). The 

determination of the structures of human S1PL and of the “humanised” S. thermophilum S1PL in complex with 

various inhibitors (PDB codes : (PDB codes: 4Q6R, 5EUE and 5EUD respectively) have highlighted how these 

molecules block the substrate-binding funnel. It will also be interesting to test these and other S1PL inhibitors 

against various bacterial S1PLs with a view to screen them for antibacterial activity.  

To our knowledge, this is the first time that two highly-related S1PLs have been identified in the same 

organism. At present, this phenomenon appears to be exclusive to species within the Burkholderia genus. The 

Burkholderia genus encompasses a remarkably diverse and versatile group of bacteria including 

environmentally-beneficial species as well as pathogens of animals, humans and plants. It is notable that our 

search of available genomes identified that Burkholderia-encoded S1PLs are restricted to B. pseudomallei and 

B. thailandensis, both of which are facultative intracellular species. This is consistent with the bacterial S1PLs 

contributing to pathogenesis during infection of host cells, as has recently been described for Legionella-
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encoded S1PL (57). The ability to invade, survive and replicate within host cells is central to the pathogenesis 

of B. pseudomallei (60) and whilst B. thailandensis is a highly attenuated relative to B. pseudomallei, it displays 

a similar intracellular phenotype (61) and as such is a valuable model organism for studying the intracellular 

lifestyle of B. pseudomallei. SLs have been shown to be key players in cell homeostasis during stress such as 

that caused by bacterial infection (62). They mediate crosstalk between apoptosis and autophagy, the two major 

mechanisms of controlled cell death (63). Recently, studies on L. pneumophila, the causative agent of 

Legionnaires’ disease, have sought to understand the role that the L. pneumophila S1PL plays in its ability to 

survive intracellularly (57). It was found that L. pneumophila S1PL activity alone prevented an increase in 

sphingosine levels in infected host cells and this led to an inhibition of autophagy during macrophage infection. 

This work revealed the disruption of host SL biosynthesis as a novel mechanism used by intracellular pathogens 

to inhibit autophagy. 

Since Burkholderia appear to not produce sphingolipids such as S1P, the identity of the “true” 

intracellular substrate(s) for these enzyme is the subject of conjecture. We have shown that S1PL2021 can also 

degrade sphingosine as well as S1P, and it will be interesting to study a comprehensive range of potential 

substrates with each S1PL isoform to define their specificity. Burkholderia would most likely encounter high 

concentrations of S1P only during infection of a mammalian host and this would require the S1PLs to be 

secreted. In a recent complementary study we have discovered that the two S1PL homologs present in B. 

thailandensis (BTH_II0309 and BTH_II0311, Fig. S1) are found in the extracellular supernatant in a pH-

dependent manner (Custodio et al, Mol Microbiol. 2016 Sep 15. doi: 10.1111/mmi.13531). We are currently 

investigating whether both these S1PLs form part of a higher order complex as pairs of homo- or hetero- dimers 

but initial native gel electrophoresis suggests the presence of larger complexes. We also found that when 

expressed alone, BTH_II0309 and BTH_II0311 could each partially restore resistance to 10 µM sphingosine 

treatment of a yeast Dpl1 mutant and full resistance was displayed by cells expressing both S1PLs. Our future 

work will determine whether the B. pseudomallei S1PL2021 and S1PL2025 can also complement the yeast Dpl1 

mutant and are secreted in a similar way to the B. thailandensis isoforms. We studied the functional roles of the 

Burkholderia S1PLs and found they were required for virulence in a Galleria wax moth larvae model and 

survival in murine macrophages (Custodio et al.). Of particular relevance to the current study, we discovered 

that a B. pseudomallei S1PL2025 mutant displayed a much reduced virulence phenotype (80% survival) 
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compared to the wild type organism (100% mortality) using a murine infection model in BALB/c mice. We are 

currently constructing the B. pseudomallei S1PL2021 knock out and a double mutant to study their virulence 

phenotypes. In summary, our work has characterised two S1PL homologs in B. pseudomallei and, when 

combined with recent studies on the emerging roles of bacterial S1PLs in pathogenesis, suggests that these 

enzymes merit further study. 
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Enzyme  FALDH   S1PL2021  S1PL2025 
Substrate  2E-HEX  S1P  S1P 

V
MAX      (nanomoles/min/mg)  314.9 ± 13.9  17.5 ± 1.3  8.2± 1.775 

K
M        

           (µM)  19.4 ± 3.2  48.2 ± 9.4  50.19 ± 8.3 
k

cat
               (s-1)  0.22 ± 0.01  0.015 ± 0.003  0.008 ± 0.0005 

k
cat

/K
M

       (M-1s-1)  1.13 x 104  3.2 x 102  1.5 x 102 

 

Table 1. Michaelis Menten kinetic data for recombinant human FALDH using 2E-HEX as substrate and the B. 

pseudomallei S1PL2021 and S1PL2025 enzymes using S1P as a substrate. 
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Wavelength 0.976 
Resolution range 43.27 - 2.104 (2.179 - 2.104) 

Space group P 1 21 1 
Unit cell 59.6 126.776 59.725 90 97.508 90 

Total reflections 280513 (25538) 
Unique reflections 50729 (4971) 

Multiplicity 5.5 (5.1) 
Completeness (%) 1.00 (0.98) 
Mean I/sigma(I) 8.57 (1.87) 
Wilson B-factor 32.55 

R-merge 0.1336 (0.6925) 
R-meas 0.1475 (0.7717) 
CC1/2 0.994 (0.671) 
CC* 0.999 (0.896) 

Reflections used in refinement 50714 (4970) 
Reflections used for R-free 2637 (273) 

R-work 0.1688 (0.2445) 
R-free 0.2268 (0.3101) 

CC(work) 0.947 (0.834) 
CC(free) 0.932 (0.743) 

Number of non-hydrogen atoms 7190 
macromolecules 6890 
Protein residues 879 

RMS(bonds) 0.013 
RMS(angles) 1.22 

Ramachandran favored (%) 97 
Ramachandran allowed (%) 2.9 
Ramachandran outliers (%) 0 

Rotamer outliers (%) 1.8 
Clashscore 3.26 

Average B-factor 39.12 
macromolecules 39.17 

solvent 37.96 
 

Table 2. S1PL2021 X-ray crystallographic data collection and refinement statistics. 
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Fig. 1. Metabolism of sphingosine 1-phosphate (S1P). Sphingosine 1-phosphate lyase (S1PL) catalyses the 

degradation of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine (PE).The 2E-HEX product is a 

substrate for the NAD+-dependent enzyme, fatty aldehyde dehydrogenase (FALDH), which oxidizes 2E-HEX 

to the fatty acid with the concomitant reduction of the NAD+ cofactor.  
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Fig. 2. UV-visible spectroscopy analysis of purified S1PL2021. (A) The UV-vis spectrum of PLP-bound 

S1PL2021 changes upon incubation with 100 µM S1P substrate in a time-dependent manner. Over 30 mins 

(scanning every 5 mins), a decrease in absorbance at 420 nm, coupled to an increase in the 330 nm region is 

observed. The structure of the PLP-S1P external aldimine substrate is shown. (B) Addition of 10 mM PE to 

S1PL2021 results in changes to the PLP spectrum over a longer timeframe (3 hrs, scanning every 30 mins). 

There is a shift of the 420nm peak to 395 nm and a broader increase in the 320-380 nm region associated with 

the formation of PLP-PE external aldimine (structure shown). (C) Addition of 100 µM S1P  to S1PL2025 leads 
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to changes in the PLP UV-vis spectrum region similar to that observed with S1PL2021 (30, with scans every 5 

mins) (D) Addition of 10 mM PE to S1PL2025 results in changes to the PLP spectrum over a longer timeframe 

(3 hrs, scanning every 30 mins). (E) Addition of 300 µM D-erythro sphingosine to S1PL2021 results in changes 

to the PLP spectrum (4 hrs, scanning every 30 mins). 
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Fig. 3. Analysis of S1PL2021 activity by the Berdyshev et al method. (A) The reaction between 2E-HEX and semicarbazide leads to formation of the semicarbazone 

derivative (2E-HEX SC) which under ESI-MS gives an ion with predicted value of m/z = 296.3 Da ([M+H]+, C17H34N3O+). (B) ESI-MS analysis of the 2E-HEX 

positive control reaction showing an ion with m/z = 296.3 Da corresponding to the 2E-HEX SC. (C) Incubation of S1P in buffer followed by semicarbazide 

derivitisation in the absence of enzyme. The ion with m/z = 296.3 Da is absent but an ion with m/z = 380.4 Da corresponding to S1P is observed ([M+H]+, C18H38NO5P 

= 380.2 Da, predicted). (D) The S1PL2021 enzymatic reaction showing the formation of the 2E-HEX SC ion with m/z = 296.3 Da confirming the activity of S1PL2021. 

(E) The no substrate control lacking S1P and the 2E-HEX SC.
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Fig. 4. Kinetic analysis of FALDH and S1PL2021/S1PL2025. (A) Recombinant human FALDH (0.5 
µM) displays enzyme activity with aldehyde substrates 2E-HEX, hexadecanal and tetradecanal. (B) 
Michaelis Menten kinetic analysis of FALDH using 2E-HEX as a substrate (0-260 µM). The KM for 
2E-HEX = 19.4 ± 3.2 µM and kcat = 0.22 ± 0.01 s-1. (C and D) Michaelis Menten kinetic analysis using 
the S1PL/FALDH coupled assays with S1P as substrate (6.0 µM S1PL, 0.5 µM FALDH). The KM and 
kcat values for S1P are; 48.2 ± 9.4 µM and 0.015 ± 0.003s-1 for (C) S1PL2021, and 50.2 ± 8.3 µM and 

S1P

Sphingosin
e

0

50

100

%
 W

T 
ac

tiv
ity

(D) (C) 

(B) (A) 

(E) (F) 



38 
 

0.008 ± 0.0005s-1 for (D) S1PL2025. (E) The S1PL2021 K271A mutant displays negligible activity 
when using the coupled assay. (F) Use of the coupled assay to allow comparison of the S1PL20121 
lyase activity with S1P (100 µM) and D-erythro sphingosine (300 µM) substrates. 
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Fig. 5. Structure of S1PL2021. (A) Orthogonal views of the secondary structure of the S1PL2021 
homodimer (PDB code: 5K1R). The two chains present in the asymmetric unit are shown as cartoon 
representations in green and red. The PLP cofactor bound as an internal aldimine to K271 is shown as 
sticks (LLP271). The region of the protein between residues 430 and 455 that was absent from the 
experimental electron density is modelled based on homologous structures; the dashed lines represent 
loops and circle represents an alpha helix. (B) Stereo view of the PLP-binding site of S1PL2021. 
Residues within 4 Å of the PLP cofactor are shown as sticks. Water molecules in this site are shown as 
crosses. The experimental 2mFo-DFc electron density is shown contoured at 1.5 σ around the internal 
aldimine formed between the PLP and K271 (LLP271). The PLP binding site is at the dimer interface 
and residues from each monomer are coloured green and red. 
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