100 research outputs found
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming
International audienceNorthern hemisphere peatlands are substantial carbon stores. However, recent climate change and human impacts (e.g., drainage and atmospheric nutrient deposition) may trigger the emission of their stored carbon to the atmosphere. Biodiversity losses are also an important consequence of those changes. Therefore, there is a need to recognise these processes in space and time. Global change experiments are often conducted to improve our understanding of the potential responses of various ecosystems to global warming and drought. Most of the experiments carried out in peatlands are focused on carbon balance and nitrogen deposition. Nevertheless, it is still unclear how fast peatlands respond to temperature changes and water-table lowering in the continental climate setting. This is important because continental regions account for a significant proportion of all northern hemisphere peatlands. A combination of short-term and long-term approaches in a single research project is especially helpful because it facilitates the correct interpretation of experimental data. Here we describe the CLIMPEAT project-a manipulative field experiment in a Sphagnum-dominated peatland supported by a high-resolution multi-proxy palaeoecological study. The design of the field experiment (e.g., treatments), methodology and biogeographical setting are presented. We suggest it is beneficial to support field experiments with an investigation of past environmental changes in the studied ecosystem, as human impacts during the past 300 years have already caused substantial changes in ecosystem functioning which may condition the response in experimental studies
Dynamics of the Atmospheric Boundary Layer over two middle-latitude rural sites with Doppler lidar
The Atmospheric Boundary Layer (ABL) over two middle-latitude rural sites was characterized in terms of mean horizontal wind and turbulence sources using a standard classification methodology based on Doppler lidar. The first location was an irrigated olive orchard in ubeda (Southern Spain), representing one of the most important crops in the Mediterranean basin and a typical site with Mediterranean climate. The second location was PolWET peatland site in Rzecin (Northwestern Poland), representing one of the largest natural terrestrial carbon storages that have a strong interaction with the climate system. The results showed typical situations for non cloud-topped ABL cases, where ABL is fully developed during daytime due to convection, with high turbulent activity and strong positive skewness indicating frequent and powerful updrafts. The cloud-topped cases showed the strong influence that clouds can have on ABL development, preventing it to reach the same maximum height and introducing top-down movements as an important contribution to mixing. The statistical analysis of turbulent sources allowed for finding a common diurnal cycle for convective mixing at both sites, but nocturnal wind shear driven turbulence with marked differences in its vertical distribution. This analysis demonstrates the Doppler lidar measurements and the classification algorithm strong potential to characterize the dynamics of ABL in its full extent and with high temporal resolution. Moreover, some recommendations for future improvement of the classification algorithm were provided on the basis of the experience gained.Peer reviewe
Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law
The EU Nature Restoration Law (NRL) is critical in restoring degraded ecosystems. However, active afforestation of degraded peatlands has been suggested by some as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry and its limitations, uncertainties and evidence gaps. Based on this discussion we conclude:
Afforestation of drained peatlands, while maintaining their drained state, is not equivalent to ecosystem restoration. This approach will not restore the peatland ecosystem's flora, fauna, and functions.
There is insufficient evidence to support the long-term climate change mitigation benefits of active afforestation of drained peatlands.
Most studies only focus on the short-term gains in standing biomass and rarely explore the full life cycle emissions associated with afforestation of drained peatlands. Thus, it is unclear whether the CO2 sequestration of a forest on drained peatland can offset the carbon loss from the peat over the long term.
In some ecosystems, such as abandoned or certain cutaway peatlands, afforestation may provide short-term benefits for climate change mitigation compared to taking no action. However, this approach violates the concept of sustainability by sacrificing the most space-effective carbon store of the terrestrial biosphere, the long-term peat store, for a shorter-term, less space-effective, and more vulnerable carbon store, namely tree biomass.
Consequently, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts.
To restore degraded peatlands, hydrological conditions must first be improved, primarily through rewetting
Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials
The effects of atmospheric nitrogen deposition (N) on carbon (C) sequestration in forests have often been assessed by relating differences in productivity to spatial variations of N across a large geographic domain. These correlations generally suffer from covariation of other confounding variables related to climate and other growth-limiting factors, as well as large uncertainties in total (dry+wet) reactive nitrogen (N) deposition.We propose a methodology for untangling the effects of N from those of meteorological variables, soil water retention capacity and stand age, using a mechanistic forest growth model in combination with eddy covariance CO exchange fluxes from a Europe-wide network of 22 forest flux towers. Total N deposition rates were estimated from local measurements as far as possible. The forest data were compared with data from natural or semi-natural, non-woody vegetation sites. The response of forest net ecosystem productivity to nitrogen deposition (dNEP= dN) was estimated after accounting for the effects on gross primary productivity (GPP) of the co-correlates by means of a meta-modelling standardization procedure, which resulted in a reduction by a factor of about 2 of the uncorrected, apparent dGPP/dN value. This model-enhanced analysis of the C and N flux observations at the scale of the European network suggests a mean overall dNEP/dN response of forest lifetime C sequestration to N of the order of 40–50 g C per g N, which is slightly larger but not significantly different from the range of estimates published in the most recent reviews. Importantly, patterns of gross primary and net ecosystem productivity versus N were non-linear, with no further growth responses at high N levels (N >2.5–3 gNm yr) but accompanied by increasingly large ecosystem N losses by leaching and gaseous emissions. The reduced increase in productivity per unit N deposited at high N levels implies that the forecast increased N emissions and increased Ndep levels in large areas of Asia may not positively impact the continent’s forest CO sink. The large level of unexplained variability in observed carbon sequestration efficiency (CSE) across sites further adds to the uncertainty in the dC/dN response
Nitrous oxide emissions from European agriculture - An analysis of variability and drivers of emissions from field experiments
Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup>, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (<i>p</i> < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N<sub>2</sub>O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation
Settling-driven gravitational instabilities associated with volcanic clouds: new insights from experimental investigations
Downward propagating instabilities are often observed
at the bottom of volcanic plumes and clouds. These
instabilities generate fingers that enhance the sedimentation of
fine ash. Despite their potential influence on tephra dispersal
and deposition, their dynamics is not entirely understood,
undermining the accuracy of volcanic ash transport and dispersal
models. Here, we present new laboratory experiments
that investigate the effects of particle size, composition and
concentration on finger generation and dynamics. The experimental
set-up consists of a Plexiglas tank equipped with a
removable plastic sheet that separates two different layers.
The lower layer is a solution of water and sugar, initially
denser than the upper layer, which consists of water and particles.
Particles in the experiments include glass beads as well
as andesitic, rhyolitic and basaltic volcanic ash. During the
experiments, we removed the horizontal plastic sheet separating
the two fluids. Particles were illuminated with a laser and
filmed with a HD camera; particle image velocimetry (PIV) is
used to analyse finger dynamics. Results show that both the
number and the downward advance speed of fingers increase
with particle concentration in the upper layer, while finger
speed increases with particle size but is independent of particle
composition. An increase in particle concentration and turbulence
is estimated to take place inside the fingers, which could
promote aggregation in subaerial fallout events. Finally, finger
number, finger speed and particle concentration were observed
to decrease with time after the formation of fingers.
A similar pattern could occur in volcanic clouds when the
mass supply from the eruptive vent is reduced. Observed evolution
of the experiments through time also indicates that there
must be a threshold of fine ash concentration and mass eruption
rate below which fingers do not form; this is also confirmed
by field observations.Published395V. Dinamica dei processi eruttivi e post-eruttiviJCR Journa
Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
The impact of atmospheric reactive nitrogen (N) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N inputs and losses, these data were also combined with in situ flux measurements of NO, NO and CH fluxes; soil NO̅ leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm yr at total wet+dry inorganic N deposition rates (N) of 0.3 to 4.3 gNm yr and from -4 to 361 g Cm yr at N rates of 0.1 to 3.1 gNm yr in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO exchange, while CH and NO exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N where N leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N losses by denitrification. Nitrogen losses in the form of NO, NO and especially NO̅ were on average 27%(range 6 %–54 %) of N at sites with N 3 gNm yr. Such large levels of N loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N deposition up to 2–2.5 gNm yr, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated N levels (> 2.5 gNm yr), where inorganic N losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N levels was partly the result of geographical cross-correlations between N and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N
- …