Abstract

The impact of atmospheric reactive nitrogen (Nr_{r}) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr_{r} deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr_{r} deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr_{r} inputs and losses, these data were also combined with in situ flux measurements of NO, N2_{2}O and CH4_{4} fluxes; soil NO3_{3}̅ leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm2^{-2} yr1^{-1} at total wet+dry inorganic Nr_{r} deposition rates (Ndep_{dep}) of 0.3 to 4.3 gNm2^{-2} yr1^{-1} and from -4 to 361 g Cm2^{-2} yr1^{-1} at Ndep_{dep} rates of 0.1 to 3.1 gNm2^{-2} yr1^{-1} in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2_{2} exchange, while CH4_{4} and N2_{2}O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep_{dep} where Nr_{r} leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2_{2} losses by denitrification. Nitrogen losses in the form of NO, N2_{2}O and especially NO3_{3}̅ were on average 27%(range 6 %–54 %) of Ndep_{dep} at sites with Ndep_{dep} 3 gNm2^{-2} yr1^{-1}. Such large levels of Nr_{r} loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr_{r} deposition up to 2–2.5 gNm2^{-2} yr1^{-1}, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep_{dep} levels (> 2.5 gNm2^{-2} yr1^{-1}), where inorganic Nr_{r} losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep_{dep} levels was partly the result of geographical cross-correlations between Ndep_{dep} and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep_{dep}

    Similar works