6,012 research outputs found
Wingtip vortex in a NACA0012 airfoil and its active control
Contribución mediante sesión pósterWe conduct experiments in a towing-tank to analyse the flow patterns of wingtip vortices in a NACA 0012 airfoil. In this experimental research, we provide PIV measurements and flow visualisations. Without active control, several parameters are given experimentally as function of the Reynolds number, so we compare these data with the theoretical models of Batchelor, and Moore and Saffman together with DNS. Secondly, we analyse the effect of a continuous injection in the spanwise direction. The continuous jet has a strong influence on the wing-tip vortex formation. We explore this effect at low chord based Reynolds number ranging from 7000 up to 20000. We change the aspect ratio of the injection, R, defined as the ratio of the velocities between the jet (Uj) and free-stream (U). For R=1, we find that the jet strongly affects the wingtip vortex formation with a sudden decrement of the axial vorticity and the azimuthal velocity. This technique is a challenge and a promising tool to reduce the intensity of the vortex core.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays
Chiral properties of the two phases - collinear motif (below Morin transition
temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered
hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray
Bragg diffraction, using circular polarized incident x-rays tuned near the iron
K-edge. Magneto-electric multipoles, including an anapole, fully characterize
the high-temperature canted phase, whereas the low-temperature collinear phase
supports both parity-odd and parity-even multipoles that are time-odd. Orbital
angular momentum accompanies the collinear motif, while it is conspicuously
absent with the canted motif. Intensities have been successfully confronted
with analytic expressions derived from an atomic model fully compliant with
chemical and magnetic structures. Values of Fe atomic multipoles previously
derived from independent experimental data, are shown to be completely
trustworthy
Effect of the axial jet on the optimal response in Batchelor vortex
En este póster se estudia la respuesta óptima del torbellino de Batchelor para distintos números de onda. Se demuestra que incluso teniendo la velocidad axial, un torbellino es capaz de tener grandes amplificaciones de energía.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields
How and where are coronal loops rooted in the solar lower atmosphere? The
details of the magnetic environment and its evolution at the footpoints of
coronal loops are crucial to understanding the processes of mass and energy
supply to the solar corona. To address the above question, we use
high-resolution line-of-sight magnetic field data from the Imaging Magnetograph
eXperiment instrument on the SUNRISE balloon-borne observatory and coronal
observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics
Observatory of an emerging active region. We find that the coronal loops are
often rooted at the locations with minor small-scale but persistent
opposite-polarity magnetic elements very close to the larger dominant polarity.
These opposite-polarity small-scale elements continually interact with the
dominant polarity underlying the coronal loop through flux cancellation. At
these locations we detect small inverse Y-shaped jets in chromospheric Ca II H
images obtained from the SUNRISE Filter Imager during the flux cancellation.
Our results indicate that magnetic flux cancellation and reconnection at the
base of coronal loops due to mixed polarity fields might be a crucial feature
for the supply of mass and energy into the corona.Comment: Published in the Astrophysical Journal Supplement Serie
Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species
The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4 ·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca-SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars
Dynamical Processing of Geophysical Signatures based on SPOT-5 Remote Sensing Imagery
An intelligent post-processing computational paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of geophysical signatures based on Spot-5 imagery is proposed. As a matter of particular study, a robust algorithm is reported for the analysis of the dynamic behavior of geophysical indexes extracted from the real-world remotely sensed scenes. The simulation results verify the efficiency of the approach as required for decision support in resources management
Kinematics of Magnetic Bright Features in the Solar Photosphere
Convective flows are known as the prime means of transporting magnetic fields
on the solar surface. Thus, small magnetic structures are good tracers of the
turbulent flows. We study the migration and dispersal of magnetic bright
features (MBFs) in intergranular areas observed at high spatial resolution with
Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion
process whose parameters are computed for various areas in the quiet Sun and
the vicinity of active regions from seeing-free data. We find that magnetic
concentrations are best described as random walkers close to network areas
(diffusion index, gamma=1.0), travelers with constant speeds over a
supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux
emergence and/or within active regions (gamma=1.4-1.5). The three types of
regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s,
and 25-70 km^2/s, respectively. The MBFs in these three types of regions are
found to display a distinct kinematic behavior at a confidence level in excess
of 95%.Comment: 8 pages, 4 figure
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
Incidents control in radiotherapy oncology
Primer pla de l'escut del monarca del s. XVI,
conservat i ubicat a la porta de la UB. Mesura
1,60 x 2,20 metre si és de pedra sorrenca
Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil.
This paper studies the tribological behavior of the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N 1888 ][NTf 2 ]) as additive at different concentrations (1.25, 2.50, 3.75 and 5.00 wt%) in a polar base oil (diester). A tribometer using a ball-on-disk reciprocating configuration under fully flooded lubrication was used at a frequency of 15 Hz, at three different loads (40, 80 and 120 N), stroke length of 4 mm, and duration of 45 min. Worn surface on the disk was studied by confocal microscopy, SEM and XPS. Main results showed similar coefficient of friction for all lubricant samples; but different wear results were found at different loads, probably related with the chemical states found for fluorine on the worn surface and the temperature-dependent adsorption-desorption processes
- …
