

Effect of the axial jet on the optimal response in Batchelor vortex

F. J. Blanco-Rodríguez, J. Hermenegildo García-Ortíz, <u>L. Parras</u> and C. del Pino

Universidad de Málaga, Andalucía Tech, E.T.S. Ingeniería Industrial, C/ Doctor Ortíz Ramos, s/n, 29071 Málaga, SPAIN

Introduction

Wing-tip vortices are circular patterns of rotating air left behind a wing as it generates lift.

Instabilities:

Non-modal stability analysis $(t \sim 0)$ - Response to initial conditions (Optimal perturbation) Transient growth (Mao2012)

- Response to external forcing (**Optimal response**)

/	DNS		
	Base flow in cartesian coordinates $U = U_x(x, y, z, t) e_x + U_y(x, y, z, t) e_y + U_y(x, y, z, t) e_y$	$-U_z(x, y, z, t) \boldsymbol{e}_z$	
	$U_{x}(x, y, z, t) = -\frac{y}{\sqrt{x^{2} + y^{2}}} V(x, y, z, t), U_{y}(x, y, z, t) = \frac{x}{\sqrt{x^{2} + y^{2}}} V(x, y, z, t)$	t), $U_z(x, y, z, t)$ =	$= q^{-1} e^{-(x^2 + y^2)}$
	Fourier spectral method $\mathbf{k} = k_x \mathbf{e}_x + k_y \mathbf{e}_y + k_z \mathbf{e}_z$	P.B.C. y ▲	
	$\boldsymbol{u}(x,y,k_z,t) = \iint \hat{\boldsymbol{u}}(k_x,k_y,k_z,t) e^{i(k_xx+k_yy)}dk_xdk_y \qquad \qquad$	X	P.B.C

Dpto. Ingeniería Mecánica y Mecánica de Fluidos – E.T.S.I. Industriales – Universidad de Málaga and Andalucía Tech Ampliación de Campus de Teatinos, C/ Doctor Ortíz Ramos, s/n C.P 29071 Málaga – SPAIN