125 research outputs found

    PT-Symmetric Quantum Electrodynamics and Unitarity

    Full text link
    More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, PT\mathcal{PT}. It was shown that if PT\mathcal{PT} is unbroken, energies were, in fact, positive, and unitarity was satisifed. Since quantum mechanics is quantum field theory in 1 dimension, time, it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of PT\mathcal{PT}-invariant quantum electrodynamics was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the K\"all\'en spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of analyticity. The status of PT\mathcal{PT}QED will be reviewed in this report, as well as the general issue of unitarity.Comment: 13 pages, 2 figures. Revised version includes new evidence for the violation of unitarit

    Estudio longitudinal de lesiones deportivas en practicantes de gimnasia aeróbica de competición

    Get PDF
    Introduction: Aerobic gymnastics, since its membership in the International Gymnastics Federation, has undergone changes in its regulations. Objective: To analyze the injuries found in Spanish aerobic gymnastics athletes during different editions of the Code of Points. Methods: A descriptive, longitudinal and compara-tive study was carried out on the epidemiology of injuries in aerobic gymnastics published during different editions of the Code of Points. Results: It highlights that the number of injuries decreased from 156 to 38 last year. This decline has been related to the restriction on the number of difficulties in the exercise and the number of elements to be performed on the floor. However, they have increased the number and value of the difficulties. Conclusions: Therefore, it is concluded that the changes made in the regulations are intended to safeguard the health of athletes and ensure that competition develops at its best artistic and technical aspect.Introdução: A ginástica aeróbica, desde sua adesão à Federação Internacional de Ginástica, passou por mudanças em seus regulamentos. Objetivo: Analisar as lesões encontradas nos atletas espanhóis de ginástica aeróbica durante as diferentes edições do Código de Pontos. Métodos: Realizou-se um estudo descritivo, longitudinal e comparativo sobre a epidemiologia de lesões na ginástica aeróbica publicado durante as diferentes edições do Código de Pontos. Resultados Salienta-se que o número de lesões diminuiu de 156 para 38 no ano passado. Este declínio tem sido relacionado com a limitação do número de dificuldades no exercício e o número de elementos a serem feitos no solo. No entanto, eles aumentaram o número e valor das dificuldades. Conclusões: Portanto, concluiu-se que as modificações feitas nos regulamentos destinam-se a salvaguardar a saúde dos atletas e garantir que a competição se desenvolva no seu melhor aspecto artístico e técnico.Introducción: La gimnasia aeróbica desde su pertenencia a la Federación Internacional de Gimnasia ha sufrido cam-bios en su reglamentación. Objetivo: Analizar las lesiones que los deportistas españoles de gimnasia aeróbica presentaron durante las diferentes ediciones del Código de Puntuación. Métodos: Se ha realizado un estudio descriptivo, longitudinal y comparativo sobre la epidemiología de las lesiones en la gimnasia aeróbica publicado durante las diferentes ediciones del Código de Puntuación. Resultados: El estudio destaca la disminución del número de lesiones, de 156 a 38 en el último año. Esta disminución ha tenido relación con la restricción del número de dificultades en el ejercicio y la cantidad de elementos a realizar en el suelo. Sin embargo, han aumentado el número y el valor de las dificultades. Conclusiones: Por tanto, han concluido que las modificaciones que se realizan en la reglamentación tienen como objetivo velar por la salud de los deportistas y garantizar que la competición se desarrolle en su máximo esplendor artístico y técnico

    PHYSIC-MECHANICAL CHARACTERIZATION OF THE CLAYEY SOILS OF ISSABA DEPRESSION IN THE SOUTH-EAST OF BENIN

    Get PDF
    The instability of soils due to the swelling phenomenon is among others at the origin of enormous damages in civil engineering works, such the deformations, the cracking, the tear- ing, the wear of the rotation surface and the destruction of the foundations observed at the infrastructures level (housing, socio-community centers, covered road or not). This phenome- non is a very complex and particularly threatening situation for the different construction projects, in a lot of regions of the world where these types of soilsare met and at the level of which we note premature damages of the works. It urges then to make specific arrangements during the execution of infrastructures. The phenomenon described above is also present in Benin mainly in the depression of Lama

    Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication.</p> <p>Results</p> <p>A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication.</p> <p>Conclusion</p> <p>In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.</p

    Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peanut (<it>Arachis hypogaea </it>L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave <it>A. duranensis </it>as the wild donor of the A genome and <it>A. ipaënsis </it>as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between <it>A. duranensis </it>and <it>A. ipaënsis</it>.</p> <p>Results</p> <p>Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with <it>A. duranensis </it>and <it>A. ipaënsis </it>being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC<sub>1</sub>F<sub>1 </sub>and then BC<sub>2</sub>F<sub>1 </sub>lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions.</p> <p>Conclusion</p> <p>The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.</p

    Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea

    Full text link
    [EN] Several loggerhead sea turtle (Caretta caretta) nesting events have been recorded along Spain's Mediterranean coast, outside its known nesting range, in recent years. In view of the possible expansion of its nesting range and considering the conservation status of this species, management measures like nest protection and head-start programs have been implemented. To study the dispersal behavior and survival of head-started loggerheads, 19 post-hatchlings from three nesting events were satellite tracked after their release in three consecutive years (2015-2017). This paper presents the first study of survival probabilities and dispersal movements of loggerhead post-hatchlings in the Mediterranean basin. Monitored post-hatchlings dispersed over large areas using variable routes, mainly off the continental shelf. Nonetheless, post-hatchlings dispersed to high-productivity warmer areas during the coldest months of monitoring. These areas might be optimum for their survival and development. We observed differences regarding dispersal orientation and routes among individuals, even from the same nest, release date, and location. Our survival models contributed to improving current survival estimates for sea turtle post-hatchlings. We observed a high probability of survival in head-started individuals during the first months after release, usually the most critical period after reintroduction. The data did not support an effect of habitat (neritic or oceanic) in survival, or an effect of the region (Balearic sea or Alboran sea) in survival probability. Differences in survival between nests were observed. These differences might be related to parasitic infections suffered during the head-starting period. This study shows that nest management measures may contribute to the conservation and range expansion of the loggerhead turtle population in the western Mediterranean.This satellite study was funded by Universitat Politecnica de Valencia, Ministerio de Agricultura y Medio Ambiente (ref: 16MNSV006), Ministerio de Economia, Industria y Competitividad (ref: CGL2011-30413), Fundacion CRAM, Fundacion Hombre y Territorio and Eduardo J. Belda. Corresponding author, S. Abalo, was supported by a Ph.D. grant (FPU) from Ministerio de Educacion, Cultura y Deporte (Spain). J. Tomas is also supported by project Prometeo II (2015) of Generalitat Valenciana and project INDICIT of the European Commission, Environment Directorate-General. We are extremely thankful to the entities that have collaborated: we thank all professionals at the Oceanografic, especially at the ARCA Rehabilitation Center, for their many efforts and whole-hearted dedication to the best animal care. In particular, we are grateful to the Conselleria d'Agricultura, Medi Ambient, Canvi Climatic i Desenvolupament Rural of the Valencia Community Regional Government. We also thank the professionals at Centro de Recuperacion de Animales Marinos (CRAM) for their dedication and animal care. We are thankful to the Marine Zoology Unit of the University of Valencia, NGO Xaloc, EQUINAC, Aquarium of Sevilla, Donana Biological Station (EBD-CSIC) and to involved professionals at Consejeria de Medio Ambiente y Ordenacion del Territorio (CMAOT) of Junta de Andalucia, especially at the Andalusian Marine Environment Management Center (CEGMA) for their efforts with animal care, logistics for release events and necropsy of "Rabiosa". We are particularly grateful to the people who called 112 to report a nesting event and to the nest custody volunteers. Thanks are due to the staff of Parador de El Saler for volunteering logistical support. The authors wish to acknowledge the use of the Maptool program for analysis and graphics in this paper. Maptool is a product of SEATURTLE.ORG (Information is available at www.seaturtle.org). Also, we acknowledge the use of the Douglas Argos Filter (DAF) utility in Movebank (www.movebank.org) and especially David Douglas for his help and recommendations. Finally, we thank the reviewers for their reviewing efforts.Abalo-Morla, S.; Marco, A.; Tomás, J.; Revuelta, O.; Abella, E.; Marco, V.; Crespo-Picazo, J.... (2018). Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea. Marine Biology. 165(3). https://doi.org/10.1007/s00227-018-3306-2S1653Abella P, Marco A, Martins S, Hawkes LA (2016) Is this what a climate change-resilient population of marine turtles looks like? Biol Conserv 193:124–132. https://doi.org/10.1016/j.biocon.2015.11.023Addison DS, Nelson KA (2000) Recapture of a tagged, captive reared juvenile loggerhead turtle—an example of habituation? Mar Turt Newsl 89:15–16Agostellini C, Lund U (2017) R package ‘circular’: Circular Statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/ . Accessed 05 July 2017Arendt MD, Schwenter JA, Boynton J, Segars AL, Byrd JI, David W, Parker L (2012) Temporal trends (2000–2011) and influences on fishery-independent catch rates for loggerhead sea turtles (Caretta caretta) at an important coastal foraging region in the southeastern United States. Fish Bull 110:470–483Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25. https://doi.org/10.1016/j.tree.2007.10.003Baez J, Macias D, Antonio Caminas J, Ortiz de Urbina JM, Garcia-Barcelona S, Jesus Bellido J, Real R (2013) By-catch frequency and size differentiation in loggerhead turtles as a function of surface longline gear type in the western Mediterranean Sea. J Mar Biol Assoc UK 93:1423–1427. https://doi.org/10.1017/S0025315412001841Balbín R, Flexas MM, López-Jurado JL, Peña M, Amores A, Alemany F (2012) Vertical velocities and biological consequences at a front detected at the balearic sea. Cont Shelf Res 47:28–41. https://doi.org/10.1016/j.csr.2012.06.008Balbín R, López-Jurado JL, Flexas MM, Reglero P, Vélez-Velchí P, González-Pola C, Rodríguez JM, García A, Alemany F (2014) Interannual variability of the early summer circulation around the Balearic Islands: driving factors and potential effects on the marine ecosystem. J Mar Syst 138:70–81. https://doi.org/10.1016/j.jmarsys.2013.07.004Batschelet E (1981) Circular statistics in biology. Academic Press, LondonBell C, Parsons J (2002) Cayman turtle farm head-starting project yields tangible success. Mar Turt Newsl 98:5–6Bjorndal K, Bolten A, Martins H (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272. https://doi.org/10.3354/meps202265Bolten B (2003) Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages. In: Lutz PL, Musick J, Wyneken J (eds) The biology of sea turtles. CRC Press, Boca Ratón, pp 243–257Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907. https://doi.org/10.1111/j.1365-294X.2007.03542.xBowen B, Avise JC, Richardson JI, Meylan AB, Margaritoulis D, Hopkins-Murphy SR (1993) Population Structure of loggerhead turtles (Caretta caretta) in the Northwestern Atlantic Ocean and Mediterranean Sea. Conserv Biol 7:834–844. https://doi.org/10.1046/j.1523-1739.1993.740834.xBriscoe D, Parker D, Balazs GH, Kurita M, Saito T, Okamoto H, Rice M, Polovina JJ, Crowder LB (2016) Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’. Proc R Soc B Biol Sci 283:1832. https://doi.org/10.1098/rspb.2016.0690Burke R (2015) Head-starting turtles: learning from experience. ‎Herpetol Conserv Biol 10(1):299–308Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCalenge C (2006) The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017Cardona L, Hays GC (2018) Ocean currents, individual movements and genetic structuring of populations. Mar Biol 165:10. https://doi.org/10.1007/s00227-017-3262-2Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A (2005) Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol 147:583–591. https://doi.org/10.1007/s00227-005-1578-9Cardona L, Revelles M, Parga ML, Tomás J, Aguilar A, Alegre F, Raga A, Ferrer X (2009) Habitat use by loggerhead sea turtles Caretta caretta off the coast of eastern Spain results in a high vulnerability to neritic fishing gear. Mar Biol 156:2621–2630. https://doi.org/10.1007/s00227-009-1288-9Cardona L, Fernández G, Revelles M, Aguilar A (2012) Readaptation to the wild of rehabilitated loggerhead sea turtles (Caretta caretta) assessed by satellite telemetry. Aquatic Conserv Mar Freshw Ecosyst 22:104–112. https://doi.org/10.1002/aqc.1242Carr A (1987) New perspectives on the pelagic stage of sea turtle development. Conserv Biol 1:103–121. https://doi.org/10.1111/j.1523-1739.1987.tb00020.xCarreras C, Cardona L, Aguilar A (2004) Incidental catch of the loggerhead turtle Caretta caretta off the Balearic Islands (western Mediterranean). Biol Conserv 117:321–329. https://doi.org/10.1016/j.biocon.2003.12.010Carreras C, Pascual M, Tomás J, Marco A, Hochscheid S, Bellido J, Gozalbes P, Parga M, Piovano S, Cardona L (2015) From accidental nesters to potential colonisers, the sequencial colonisation of the mediterranean by the loggerhead sea turtle (Caretta caretta). In: Kaska Y, Sonmez B, Turkecan O, Sezgin C. Book of abstracts of 35th Annual Symposium on Sea Turtle Biology and Conservation. MACART press, TurkeyCasale P (2011) Sea turtle by-catch in the Mediterranean. Fish Fish 12:299–316. https://doi.org/10.1111/j.1467-2979.2010.00394.xCasale P, Heppell S (2016) How much sea turtle bycatch is too much? A stationary age distribution model for simulating population abundance and potential biological removal in the Mediterranean. Endanger Species Res 29:239–254. https://doi.org/10.3354/esr00714Casale P, Margaritoulis D (2010) Sea turtles in the Mediterranean: distribution, threats and conservation priorities. IUCN, GlandCasale P, Mariani P (2014) The first ‘lost year’ of Mediterranean Sea turtles: dispersal patterns indicate subregional management units for conservation. Mar Ecol Prog Ser 498:263–274. https://doi.org/10.3354/meps10640Casale P, Tucker AD (2015) Caretta caretta. The IUCN Red List of Threatened Species 2015: e.T3897A83157651. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T3897A83157651.en . Accessed 29 March 2017Casale P, Mazaris AD, Freggi D, Basso R, Argano R (2007) Survival probabilities of loggerhead sea turtles (Caretta caretta) estimated from capture-mark-recapture data in the Mediterranean Sea. Sci Mar 71:365–372Casale P, Mazaris AD, Freggi D, Vallini C, Argano R (2009) Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, estimated through capture-mark-recapture records. Sci Mar 73:589–595. https://doi.org/10.3989/scimar.2009.73n3589Casale P, Mazaris A, Freggi D (2011) Estimation of age at maturity of loggerhead sea turtles Caretta caretta in the Mediterranean using length-frequency data. Endanger Species Res 13:123–129. https://doi.org/10.3354/esr00319Casale P, Freggi D, Furii G, Vallini C, Salvemini P, Deflorio M, Totaro G, Raimondi S, Fortuna C, Godley BJ (2015) Annual survival probabilities of juvenile loggerhead sea turtles indicate high anthropogenic impact on Mediterranean populations. Aquatic Conserv Mar Freshw Ecosyst 25:551–561. https://doi.org/10.1002/aqc.2467Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009) U-CARE: Utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074. https://doi.org/10.1111/j.1600-0587.2009.05968.xChristiansen F, Putman NF, Farman R, Parker DM, Rice MR, Polovina JJ, Balazs GH, Hays GC (2016) Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters. Mar Ecol Prog Ser 557:247–259. https://doi.org/10.3354/meps11874CLS (2016) Argos User’s Manual. http://www.argos-system.org/manual/3-location/34_location_classes.htm . Accessed 8 Sep 2016Clusa M, Carreras C, Pascual M, Demetropoulos A, Margaritoulis D, Rees AF, Hamza AA, Khalil M, Aureggi M, Levy Y, Türkozan O, Marco A, Aguilar A, Cardona L (2013) Mitochondrial DNA reveals Pleistocenic colonisation of the Mediterranean by loggerhead turtles (Caretta caretta). J Exp Mar Biol Ecol 439:15–24. https://doi.org/10.1016/j.jembe.2012.10.011Clusa M, Carreras C, Pascual M, Gaughran SJ, Piovano S, Giacoma C, Fernández G, Levy Y, Tomás J, Raga JA, Maffucci F, Hochscheid S, Aguilar A, Cardona L (2014) Fine-scale distribution of juvenile Atlantic and Mediterranean loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Mar Biol 161:509–519. https://doi.org/10.1007/s00227-013-2353-yColes W, Musick JA (2000) Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000:551–554. https://doi.org/10.1643/0045-8511(2000)000[0551:SSSTAA]2.0.CO;2Conant TA, Dutton PH, Eguchi T Epperly SP, Fahy CC, Godfrey MH, MacPherson SL, Possardt EE, Schroeder BA, Seminoff JA, Snover ML, Upite CM, Witherington BE (2009) Loggerhead sea turtle (Caretta caretta) 2009 status review under the US Endangered Species Act. Report of the Loggerhead Biological Review Team to the National Marine Fisheries Service, August 2009. NOAA Institutional Repository. https://repository.library.noaa.gov/view/noaa/16204 . Accessed 1 January 2018Coyne M, Godley B (2005) Satellite tracking and analysis tool (STAT): an integrated system for archiving, analyzing and mapping animal tracking data. Mar Ecol Prog Ser 301:1–7Crespo-Picazo JL, García-Párraga D, Domènech F, Tomás J, Aznar FJ, Ortega J, Corpa JM (2017) Parasitic outbreak of the copepod Balaenophilus manatorum in neonate loggerhead sea turtles (Caretta caretta) from a head-starting program. BMC Vet Res 13:154. https://doi.org/10.1186/s12917-017-1074-8Cribb TH, Crespo-Picazo JL, Cutmore SC, Stacy BA, Chapman PA, García-Párraga D (2017) Elucidation of the first definitively identified life cycle for a marine turtle blood fluke (Trematoda: Spirorchiidae) enables informed control. Int J Parasitol 47:61–67. https://doi.org/10.1016/j.ijpara.2016.11.002Delaugerre M, Cesarini C (2004) Confirmed nesting of the loggerhead turtle in Corsica. Mar Turt Newsl 104:12Demetropoulos A (2003) Impact of tourism development on marine turtle nesting: strategies and actions to minimise impact. In: Margaritoulis D, Demetropoulos A (eds) Proceedings of the First Mediterranean Conference on Marine Turtles. Barcelona Convention—Bern Convention—Bonn Convention (CMS). Nicosia, p 27–36Domènech F, Badillo FJ, Tomás J, Raga JA, Aznar FJ (2015) Epibiont communities of loggerhead marine turtles (Caretta caretta) in the western Mediterranean: influence of geographic and ecological factors. J Mar Biol Assoc UK 95:851–861. https://doi.org/10.1017/S0025315414001520Domènech F, Tomás J, Crespo-Picazo JL, García-Párraga D, Raga JA, Aznar FJ (2017) To swim or not to swim: potential transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in marine turtles. PLoS One 12:e0170789. https://doi.org/10.1371/journal.pone.0170789Douglas DC, Weinzierl R, Davidson CS, Kays R, Wikelski M, Bohrer G (2012) Moderating Argos location errors in animal tracking data. Methods Ecol Evol 3:999–1007. https://doi.org/10.1111/j.2041-210X.2012.00245.xEchwikhi K, Jribi I, Bradai MN, Bouain A (2012) Overview of loggerhead turtles coastal nets interactions in the Mediterranean Sea. Aquatic Conserv Mar Freshw Ecosyst 22:827–835. https://doi.org/10.1002/aqc.2270Gaube P, Barceló C, McGillicuddy DJ, Domingo A, Miller P, Giffoni B, Marcovaldi N, Swimmer Y (2017) The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS One 12:e0172839. https://doi.org/10.1371/journal.pone.0172839Godley BJ, Broderick AC, Glen F, Hays GC (2003) Post-nesting movements and submergence patterns of loggerhead marine turtles in the Mediterranean assessed by satellite tracking. J Exp Mar Biol Ecol 287:119–134. https://doi.org/10.1016/S0022-0981(02)00547-6González C, Bruno I, Maxwell S, Álvarez K, Albareda D, Acha EM, Campagna C (2016) Habitat use, site fidelity and conservation opportunities for juvenile loggerhead sea turtles in the Río de la Plata, Argentina. Mar Biol 163:1–13. https://doi.org/10.1007/s00227-015-2795-5Gueguen L (2000) Segmentation by maximal predictive partitioning according to composition biases. In: Gascuel O, Sagot MF (eds) Computational biology. lecture notes in computer science, 2066th edn. Springer, Berlin, pp 32–44Hays GC (2000) The implications of variable remigration intervals for the assessment of population size in marine turtles. J Therm Biol 206:221–227. https://doi.org/10.1006/jtbi.2000.2116Hays GC, Marsh R (1997) Estimating the age of juvenile loggerhead sea turtles in the North Atlantic. Can J Zool 75:40–46. https://doi.org/10.1139/z97-005Hays GC, Akesson S, Godley BJ, Luschi P, Santidrian P (2001) The implications of location accuracy for the interpretation of satellite-tracking data. Anim Behav 61:1035–1040. https://doi.org/10.1006/anbe.2001.1685Hays GC, Fossette S, Katselidis KA, Mariani P, Schofield G (2010) Ontogenetic development of migration: lagrangian drift trajectories suggest a new paradigm for sea turtles. J R Soc Interface 7:1319–1327. https://doi.org/10.1098/rsif.2010.0009Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J, Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K, Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M, Womble JN, Thums M (2016) Key questions in marine megafauna movement ecology. Trends Ecol Evol 31:463–475. https://doi.org/10.1016/j.tree.2016.02.015Hazen EL, Maxwell SM, Bailey H, Bograd SJ, Hamann M, Gaspar P, Godley BJ, Shillinger GL (2012) Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser 457:221–240. https://doi.org/10.3354/meps09857Heppell SS (1998) Application of life-history theory and population model analysis to turtle conservation. Copeia 1998:367–375. https://doi.org/10.2307/1447430Heppell SS, Crowder LB, Crouse DT (1996) Models to evaluate headstarting as a management tool for long-lived turtles. Ecol Appl 6:556–565. https://doi.org/10.2307/2269391Hines JE, Sauer JR (1989) Program CONTRAST–A general program for the analysis of several survival or recovery rate estimates. Fish and Wildlife Technical Report, 24Kobayashi DR, Farman R, Polovina JJ, Parker DM, Rice M, Balazs GH (2014) “Going with the Flow” or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta) in the South Pacific Ocean using satellite tags and ocean circulation data. PLoS One 9:e103701. https://doi.org/10.1371/journal.pone.0103701Kornaraki E, Matossian DA, Mazaris AD, Matsinos YG, Margaritoulis D (2006) Effectiveness of different conservation measures for loggerhead sea turtle (Caretta caretta) nests at Zakynthos Island, Greece. Biol Conserv 130:324–330. https://doi.org/10.1016/j.biocon.2005.12.027Lamont MM, Putman NF, Fujisaki I, Hart KM (2015) Spatial requirements of different life-stages of the loggerhead turtle (Caretta caretta) from a distinct population segment in the northern Gulf of Mexico. Herpetol Conserv Biol 10:2643Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. https://doi.org/10.2307/2937171Lohmann KJ, Putman NF, Lohmann CM (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. https://doi.org/10.1016/j.conb.2011.11.005Luschi P, Casale P (2014) Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital J Zool 81:478–495. https://doi.org/10.1080/11250003.2014.963714Maffucci F, Corrado R, Palatella L, Borra M, Marullo S, Hochscheid S, Lacorata G, Iudicone D (2016) Seasonal heterogeneity of ocean warming: a mortality sink for ectotherm colonizers. Sci Rep 6:23983. https://doi.org/10.1038/srep23983MAGRAMA (2012) Estrategia Marina. Demarcación Marina Levantino-Balear, Parte I: Marco general, Evaluación inicial y buen estado ambiental. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/costas/temas/proteccion-medio-marino/I_Marco_General_Levantino-Balear_tcm7-204338.pdf . Accessed 29 March 2017Mansfield KL, Wyneken J, Rittschof D, Walsh M, Lim CW, Richards PM et al (2012) Satellite tag attachment methods for tracking neonate sea turtles. Mar Ecol Prog Ser 457:181–192. https://doi.org/10.3354/meps09485Mansfield KL, Wyneken J, Porter WP, Luo J (2014) First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.3039Mansfield KL, Mendilaharsu ML, Putman NF, dei Marcovaldi MAG, Sacco AE, Lopez G, Pires T, Swimmer Y (2017) First satellite tracks of South Atlantic sea turtle ‘lost years’: seasonal variation in trans-equatorial movement. Proc R Soc B 284:20171730. https://doi.org/10.1098/rspb.2017.1730Margaritoulis D, Argano R, Baran I, Bentivegna F, Bradai MN, Camiñas JA, Casale P (2003) Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. In: Bolten AB (ed) Loggerhead Sea Turtle, B.E. Witherington. Smithsonian Institution

    Assessing the use of marine protected areas by loggerhead sea turtles (Caretta caretta) tracked from the western Mediterranean.

    Full text link
    Up to date 264 Marine Protected Areas (MPAs) have been declared in the western Mediterranean Sea. The management plans of 25 of these MPAs include the loggerhead sea turtle (Caretta caretta) as a priority species to protect. However, the actual use of these MPAs by the species remains unknown. Therefore, it is important to assess their contribution to loggerhead conservation in the area. To this end, satellite tracking data of 103 loggerhead turtles of varying sizes and life stages released in Spanish Mediterranean waters and Southern Tyrrhenian Sea over the 2003-2018 period were herein used. Home range and use of MPAs by tracked loggerhead turtles were analysed using post-processed state-space model locations. The tracked turtles visited several Mediterranean MPAs, but barely used them (mean percentage of monitoring time = 12.6 ± 18.2 %). There was very little overlap between turtle's core areas and tracks with the protected areas. Indeed, most of the core areas and high-density areas estimated (>85 %) were not included within any of the MPAs. Furthermore, less than 5 % of the Mediterranean MPAs were used by any tracked loggerhead sea turtles. Most of these MPAs have no protection measures that focus on this species. Loggerheads mainly use wide oceanic zones and international waters, which are difficult to protect. A high-use core area was identified for loggerhead turtles, located at the western waters of the Algerian Basin, an important fishing area outside any designated MPA and with no protection measures that focus on marine turtle conservation. We conclude that existing MPAs in the western Mediterranean may not contribute enough to loggerhead turtle conservation. We propose potential MPAs designations to be considered for loggerhead sea turtle conservation in the Mediterranean Sea at the Alboran Sea, the Algerian basin, the Northern area of the Strait of Sicily, Northeast Tunisian waters, waters around Malta, waters at the Tyrrhenian Sea and at the Ionian Sea

    Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology

    Get PDF
    Chromosome segment substitution lines (CSSLs) are powerful QTL mapping populations that have been used to elucidate the molecular basis of interesting traits of wild species. Cultivated peanut is an allotetraploid with limited genetic diversity. Capturing the genetic diversity from peanut wild relatives is an important objective in many peanut breeding programs. In this study, we used a marker-assisted backcrossing strategy to produce a population of 122 CSSLs from the cross between the wild synthetic allotetraploid (A. ipae¨nsis6A. duranensis)4x and the cultivated Fleur11 variety. The 122 CSSLs offered a broad coverage of the peanut genome, with target wild chromosome segments averaging 39.2 cM in length. As a demonstration of the utility of these lines, four traits were evaluated in a subset of 80 CSSLs. A total of 28 lines showed significant differences from Fleur11. The line6trait significant associations were assigned to 42 QTLs: 14 for plant growth habit, 15 for height of the main stem, 12 for plant spread and one for flower color. Among the 42 QTLs, 37 were assigned to genomic regions and three QTL positions were considered putative. One important finding arising from this QTL analysis is that peanut growth habit is a complex trait that is governed by several QTLs with different effects. The CSSL population developed in this study has proved efficient for deciphering the molecular basis of trait variations and will be useful to the peanut scientific community for future QTL mapping studies. (Résumé d'auteur

    Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer

    Get PDF
    Tumor-derived extracellular vesicles (EVs) are secreted in large amounts into biological fluids of cancer patients. The analysis of EVs cargoes has been associated with patient´s outcome and response to therapy. However, current technologies for EVs isolation are tedious and low cost-e cient for routine clinical implementation. To explore the clinical value of circulating EVs analysis we attempted a proof-of-concept in endometrial cancer (EC) with ExoGAG, an easy to use and highly e cient new technology to enrich EVs. Technical performance was first evaluated using EVs secreted by Hec1A cells. Then, the clinical value of this strategy was questioned by analyzing the levels of two well-known tissue biomarkers in EC, L1 cell adhesion molecule (L1CAM) and Annexin A2 (ANXA2), in EVs purified from plasma in a cohort of 41 EC patients and 20 healthy controls. The results demonstrated the specific content of ANXA2 in the purified EVs fraction, with an accurate sensitivity and specificity for EC diagnosis. Importantly, high ANXA2 levels in circulating EVs were associated with high risk of recurrence and non-endometrioid histology suggesting a potential value as a prognostic biomarker in EC. These results also confirmed ExoGAG technology as a robust technique for the clinical implementation of circulating EVs analysesThis research was funded by Instituto de Salud Carlos III, grant PI17/01919, co-financed by the European Regional Development Fund (FEDER), and by Fundación Científica de la Asociación Española Contra el Cáncer (AECC), Grupos Clínicos Coordinados 2018. Carolina Herrero is supported by a predoctoral i-PFIS fellowship from Instituto de Salud Carlos III (IFI17/00047); Laura Muinelo is supported by Asociación Española Contra el Cáncer (AECC)

    Performance of food–feed maize and cowpea cultivars under monoculture and intercropping systems: Grain yield, fodder biomass, and nutritive value

    Get PDF
    Livestock feeding in Burkina Faso is characterized by a recurrent deficit in both the quality and the quantity of fodder during the dry season, which affects animal performance. To overcome this, quality fodder/forage production is an alternative. Therefore, this study evaluated food- and feed-improved cultivars of maize and cowpea in intercropping trials using the “mother and baby trials” approach with crop–livestock farmers. The mother trial comprised a randomized block design with eight treatments and four replicates: two cowpea (KVx745-11P and Tiligré) and two maize cultivars (Barka and Espoir), and grown under two cropping systems (monoculture and intercropping). Baby trials were established on-farm and involved 30 farmers during two seasons (2019 and 2020) in four villages in the South Sudan zone of Burkina Faso. Data were collected on (1) weed density and biomass, (2) grain yield and fodder biomass, (3) intercropping efficiency, and (4) fodder nutritive value. Data were analyzed using ANOVA and the least significant difference (LSD) means separation at a 5% threshold. The results revealed that maize and cowpea intercropping significantly reduced weed biomass (p ≤ 0.05). In monoculture, the maize cultivar Barka produced a greater grain yield (4980 kg/ha) and fodder biomass [6259 kg dry matter (DM)/ha] than the cultivar Espoir, which produced a grain yield of 2581 kg/ha and fodder biomass of 4952 kg DM/ha. The cowpea cultivars, KVx745-11P and Tiligré, were similar (p ≥ 0.05) in terms of fodder biomass (2435–2820 kg DM/ha) and grain yield (1152–1163 kg/ha). For the intercropping system, land equivalent ratios for fodder biomass (1.18:1.41) and grain yield (1.02:1.44) were greater than 1; intercropping also had better productivity system indexes than the monoculture cropping system. The crude protein concentration of fodder was greater for Barka maize (9.5%–9.8%) than for Espoir maize (8.5%–8.7%). The crude protein concentration was greater for cowpea KVx745-11P (19%–21.8%) than for cowpea Tiligré (15%–17%). Intercropping both Barka maize and cowpea KVx745-11P was the most productive cropping system for maximizing grain and fodder production for crop–livestock farmers in the South Sudan zone of Burkina Faso
    corecore