257 research outputs found
Complete absence of the posterior arch of C1: Case report
Posterior atlas arch anomalies are relatively common, but have a variety of presentations ranging from partial clefts to complete agenesis of the posterior arch. Partial clefts are prevalent in 4% of patients and are generally asymptomatic. However, complete agenesis of the posterior arch is extremely rare. We report the case of a 46-year-old man who presented with upper cervical spine and occipital pain as well as left sided headaches. Imaging revealed congenital complete absence of the posterior arch of C1 (Type E) without any radiographic evidence of instability. We discuss our case in light of other reported cases and detail its management
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
Recommended from our members
Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series
The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the identification of two genetic modifiers
Variabilidade genética e correlações fenotípicas para caracteres de frutos em acessos de citros em duas safras de produção
Recursos Genético
Common Fronto-temporal Effective Connectivity in Humans and Monkeys
Cognitive pathways supporting human language and declarative memory are thought to have uniquely evolutionarily differentiated in our species. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed a new approach using functional imaging to visualize the impact of direct electrical brain stimulation in human neurosurgery patients. Applying the same approach with macaque monkeys, we found remarkably comparable patterns of effective connectivity between auditory cortex and ventro-lateral prefrontal cortex (vlPFC) and parahippocampal cortex in both species. Moreover, in humans electrical tractography revealed rapid evoked potentials in vlPFC from stimulating auditory cortex and speech sounds drove vlPFC, consistent with prior evidence in monkeys of direct projections from auditory cortex to vocalization responsive regions in vlPFC. The results identify a common effective connectivity signature that from auditory cortex is equally direct to vlPFC and indirect to the hippocampus (via parahippocampal cortex) in human and nonhuman primates
Common Fronto-temporal Effective Connectivity in Humans and Monkeys
Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus
High-sensitivity study of levels in Al-30 following beta decay of Mg-30
gamma-ray and fast-timing spectroscopy were used to study levels in Al-30 populated following the beta(-) decay of Mg-30. Five new transitions and three new levels were located in Al-30. A search was made to identify the third 1(+) state expected at an excitation energy of similar to 2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) beta gamma gamma (t) method we have measured the lifetime of the 243.8-keV state to be T-1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2(+) -> 3(+)) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-keV level is the only level observed in this study that could be a candidate for the second excited 2(+) state.Peer reviewe
Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury
Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients
In-beam spectroscopic studies of S nucleus
The structure of the S nucleus has been studied at GANIL through the
one proton knock-out reaction from a Cl secondary beam at 42
AMeV. The rays following the de-excitation of S were
detected in flight using the 70 BaF detectors of the Ch\^{a}teau de
Cristal array. An exhaustive -coincidence analysis allowed an
unambiguous construction of the level scheme up to an excitation energy of 3301
keV. The existence of the spherical 2 state is confirmed and three new
-ray transitions connecting the prolate deformed 2 level were
observed. Comparison of the experimental results to shell model calculations
further supports a prolate and spherical shape coexistence with a large mixing
of states built on the ground state band in S.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
- …