36 research outputs found

    Bipolar ice-core records constrain possible dates and global radiative forcing following the ∼74 ka Toba eruption

    Get PDF
    The Younger Toba Tuff eruption ∼74 ka ago in Indonesia, is among the largest known supereruptions in the Quaternary and its potential impact on the climate system and human evolution remains controversially debated. The eruption is dated radiometrically to 73.88 ± 0.32 ka (1σ, Storey et al., 2012) and it occurred at the abrupt cooling transition from Greenland Interstadial 20 to Greenland Stadial 20. The precise stratigraphic position of volcanic fallout detected in ice cores from both polar ice sheets has previously been narrowed down to four potential candidates. Here, we compile all available Greenland and Antarctic sulfate records, together with electrical conductivity records and recently obtained sulfur isotope records to identify, quantify and characterize these Toba candidates in terms of their likely latitudinal position of eruption, sulfur emission strength and radiative forcing. We identify that the youngest event of the four candidates is composed of two separate eruptions, both likely located in the extra-tropical Northern Hemisphere. We deem the two older events unlikely candidates for the Toba eruption because of their limited sulfur emission strengths. The second youngest event has the largest sulfur output of the Toba candidates, and it is also larger than any other volcanic event identified in ice core records over the last 60 kyr. Comparable amounts of sulfate deposits in Greenland and Antarctica strongly suggest a tropical source. We thus propose the second youngest event (74,156 years before 2000 CE) to be most likely associated with the Toba eruption. The estimated stratospheric sulfate loading of the proposed Toba eruption is 535 ± 96 Tg, which is 3 times that of Samalas 1258 CE, 6 times that of Tambora (1815) CE and 20 times that of Pinatubo (1991) CE. We derive the continuous time-series of volcanic sulfate deposition, sulfur emission strength and radiative forcing over the 74.8–73.8 ka time window, suitable for conducting experiments with climate models that either require prescribed forcing field or interactively reproduce aerosol processes. We estimate the cumulative volcanic sulfur emission strength and the radiative forcing of the two younger events and they are found to be much stronger than those at the onset of the Younger Dryas and those preceding the Little Ice Age. Stacked Greenland water isotope records show an accelerated transition trend and abrupt shift after the proposed Toba eruption and suggest that the Greenland moisture source moved southward shortly after the Toba eruption. The Toba eruption may thus have an amplifying effect on the cooling transition leading to Greenland Stadial 20

    Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    Get PDF
    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was −14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation analysis revealed that the ice melt component constituted 82 ± 5 % of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995–1998 glacier surge event. The mean annual δ18O was −19.47 ± 0.55 ‰. Despite large spatial variations in the δ18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between −23.0 and −13.7 ‰) and the GrIS (between −29.9 and −23.2 ‰). This study demonstrates that water isotope analyses can be used to obtain important information on water sources and the subglacial drainage system structure that is highly desired for understanding glacier hydrology

    Advancing Research for the Management of Long-Lived Species: A Case Study on the Greenland Shark

    Get PDF
    Long-lived species share life history traits such as slow growth, late maturity, and low fecundity, which lead to slow recovery rates and increase a population’s vulnerability to disturbance. The Greenland shark (Somniosus microcephalus) has recently been recognized as the world’s longest-lived vertebrate, but many questions regarding its biology, physiology, and ecology remain unanswered. Here we review how current and future research will fill knowledge gaps about the Greenland shark and provide an overall framework to guide research and management priorities for this species. Key advances include the potential for specialized aging techniques and demographic studies to shed light on the distribution and age-class structure of Greenland shark populations. Advances in population genetics and genomics will reveal key factors contributing to the Greenland shark’s extreme longevity, range and population size, and susceptibility to environmental change. New tagging technologies and improvements in experimental and analytical design will allow detailed monitoring of movement behaviors and interactions among Greenland sharks and other marine species, while shedding light on habitat use and susceptibility to fisheries interactions. Interdisciplinary approaches, such as the combined use of stable isotope analysis and high-tech data-logging devices (i.e., accelerometers and acoustic hydrophones) have the potential to improve knowledge of feeding strategies, predatory capabilities, and the trophic role of Greenland sharks. Measures of physiology, including estimation of metabolic rate, as well as heart rate and function, will advance our understanding of the causes and consequences of long lifespans. Determining the extent and effects of current threats (as well as potential mitigation measures) will assist the development of policies, recommendations, and actions relevant for the management of this potentially vulnerable species. Through an interdisciplinary lens, we propose innovative approaches to direct the future study of Greenland sharks and promote the consideration of longevity as an important factor in research on aquatic and terrestrial predators

    A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy

    Get PDF
    Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations

    Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Get PDF
    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka

    Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core

    No full text
    The tephrochronological record of the 1400–1640 m depth (∼10 000–16 000 calendar ice core years before present) of the NGRIP ice core has been established by particle screening of selected samples. Ash was identified in 20 samples. Correlation with ice, marine and terrestrial records from volcanic source regions in the northern hemisphere positively identifies the Saksunarvatn Ash and the Vedde Ash (Ash Zone 1). Major element chemistry of the remaining identified ash layers mainly points towards an Icelandic origin. This tephrochronological record provides new important marker horizons for correlating the timing of the climatic changes associated with the Last Glacial Termination within the North Atlantic region, as well as outlining more details concerning the frequency and composition of volcanic eruptions occurring at this deglaciation

    Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period

    Get PDF
    A novel laser microparticle detector used in conjunctionwith continuous sample melting has provided a more than 1500 mlong record of particle concentration and size distribution of theNGRIP ice core, covering continuously the period approx. from9.5-100kyr before present; measurements were at 1.65 m depthresolution, corresponding to approx. 35-200yr. Particleconcentration increased by a factor of 100 in the Last GlacialMaximum (LGM) compared to the Preboreal, and sharp variations ofconcentration occurred synchronously with rapid changes in thed18O temperature proxy. The lognormal mode μ of thevolume distribution shows clear systematic variations with smallermodes during warmer climates and coarser modes during colderperiods. We find μ ~ 1.7 μm diameter during LGM andμ ~ 1.3 μm during the Preboreal. On timescales belowseveral 100 years μ and the particle concentration exhibit acertain degree of independence present especially during warmperiods, when μ was also more variable. Using highlysimplifying considerations for the atmospheric transport anddeposition of particles we infer that (i) the observed changes ofμ in the ice largely reflect changes in the size of airborneparticles above the ice sheet and (ii) changes of μ areindicative of changes in long range atmospheric transport time.From the observed size changes we estimate shorter transit timesby roughly 25% during LGM compared to the Preboreal. Theassociated particle concentration increase from more efficientlong range transport is estimated to less than one order ofmagnitude

    Ice core evidence for a very tight link between North Atlantic and East Asian glacial climate

    Get PDF
    Corresponding millennial-scale climate changes have been reported from the North Atlantic region and from East Asia for the last glacial period on independent timescales only. To assess their degree of synchrony we suggest to interpret Greenland ice core dust parameters as proxies for the East Asian monsoon systems. This allows comparing North Atlantic and East Asian climate on the same timescale in high resolution ice core data without relative dating uncertainties. We find that during Dansgaard-Oeschger events North Atlantic region temperature and East Asian storminess were tightly coupled and changed synchronously within 5-10 years with no systematic lead or lag, thus providing instantaneous climatic feedback. The tight link between North-Atlantic and East Asian glacial climate could have amplified changes in the northern polar cell to larger scales. We further find evidence for an early onset of a Younger Dryas-like event in continental Asia, which gives evidence for heterogeneous climate change within East Asia during the last deglaciation

    Chemical and isotopic characteristics of a glacier-derived naled in front of Austre Grønfjordbreen, Svalbard

    No full text
    The chemical and stable isotope composition of a glacier-derived naled in front of the glacier Austre Grønfjordbreen, Svalbard, is examined to elucidate how secondary processes such as preferential retention and leaching affect naled chemistry. Internal candle ice layers have a chemical composition almost similar to that of the lower stratified granular ice layer, whereas the upper granular ice layer has a significantly different composition, which resembles the composition found in glacier meltwater. Grey, platy cryogenic calcite precipitates are found in clusters on the surface of the naled assemblage, indicating preferential retention of Ca2 +  and HCO3 −. This process is particular pronounced in the distal part of the naled. The isotopic composition in the naled is in accordance with the local meteoric water line and without indications of kinetic fractionation during freezing. The ability to form ice-marginal naled indicates that Austre Grønfjordbreen has the high meltwater storage potential required for triggering a glacier surge event
    corecore