51 research outputs found

    Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis

    Get PDF
    Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid–high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 1.5–6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 °C, but up to −8 °C) and weaker warming in the south (up to +0.5 to +2.7 °C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate

    Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue

    Get PDF
    Human cytomegalovirus (HCMV) can be acquired sexually and is shed from the genital tract. Cross-sectional studies in women show that changes in genital tract microbial flora affect HCMV infection and/or shedding. Since genital microbial flora may affect HCMV infection or replication by stimulating cells through Toll-like receptors (TLR), we assessed the effects of defined TLR-ligands on HCMV replication in foreskin fibroblasts and ectocervical tissue. Poly I:C (a TLR3-ligand) and lipopolysaccharide (LPS, a TLR4-ligand) inhibited HCMV and induced secretion of IL-8 and Interferon-beta (IFNβ) in both foreskin fibroblasts and ectocervical tissue. The anti-HCMV effect was reversed by antibody to IFNβ. CpG (TLR9 ligand) and lipoteichoic acid (LTA, TLR2 ligand) also inhibited HCMV infection in ectocervical tissue and this anti-HCMV effect was also reversed by anti-IFNβ antibody. In contrast, LTA and CpG did not inhibit HCMV infection in foreskin fibroblasts. This study shows that TLR ligands induce an HCMV-antiviral effect that is mediated by IFNβ suggesting that changes in genital tract flora may affect HCMV infection or shedding by stimulating TLR. This study also contrasts the utility of two models that can be used for assessing the interaction of microbial flora with HCMV in the genital tract. Clear differences in the response to different TLR ligands suggests the explant model more closely reflects in vivo responses to genital infections

    Coherent deglacial changes in western Atlantic Ocean circulation

    Get PDF
    Abrupt climate changes in the past have been attributed to variations in Atlantic Meridional Overturning Circulation (AMOC) strength. However, the exact timing and magnitude of past AMOC shifts remain elusive, which continues to limit our understanding of the driving mechanisms of such climate variability. Here we show a consistent signal of the 231Pa/230Th proxy that reveals a spatially coherent picture of western Atlantic circulation changes over the last deglaciation, during abrupt millennial-scale climate transitions. At the onset of deglaciation, we observe an early slowdown of circulation in the western Atlantic from around 19 to 16.5 thousand years ago (ka), consistent with the timing of accelerated Eurasian ice melting. The subsequent weakened AMOC state persists for over a millennium (~16.5–15 ka), during which time there is substantial ice rafting from the Laurentide ice sheet. This timing indicates a role for melting ice in driving a two-step AMOC slowdown, with a positive feedback sustaining continued iceberg calving and climate change during Heinrich Stadial 1NERC | Ref. NE/K008536/

    Klima. 30 pitanja za razumijevanje Konferencije u Parizu (Pascal Canfin i Peter Staime)

    Get PDF
    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the climate change events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 000 years. Here, we present the design of a coordinated Core experiment over the period 21–9 thousand years before present (ka) with time-varying orbital forcing, greenhouse gases, ice sheets and other geographical changes. A choice of two ice sheet reconstructions is given, and we make recommendations for prescribing ice meltwater (or not) in the Core experiment. Additional focussed simulations will also be coordinated on an ad hoc basis by the working group, for example to investigate more thoroughly the effect of ice meltwater on climate system evolution, and to examine the uncertainty in other forcings. Some of these focussed simulations will target shorter durations around specific events in order to understand them in more detail and allow for the more computationally expensive models to take part

    Wind-driven evolution of the North Pacific subpolar gyre over the last deglaciation

    Get PDF
    North Pacific atmospheric and oceanic circulations are key missing pieces in our understanding of the reorganisation of the global climate system since the Last Glacial Maximum (LGM). Here, using a basin-wide compilation of planktic foraminiferal δ18O, we show that the North Pacific subpolar gyre extended ~3 degrees further south during the LGM, consistent with sea surface temperature and productivity proxy data. Analysis of an ensemble of climate models indicates that the expansion of the subpolar gyre was associated with a substantial gyre strengthening. These gyre circulation changes were driven by a southward shift in the mid-latitude westerlies and increased wind-stress from the polar easterlies. Using single-forcing model runs, we show these atmospheric circulation changes are a non-linear response to the combined topographic and albedo effects of the Laurentide Ice Sheet. Our reconstruction suggests the gyre boundary (and thus westerly winds) began to migrate northward at ~17-16 ka, during Heinrich Stadial 1

    The PMIP4 contribution to CMIP6 – Part 4: scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments

    Get PDF
    The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM
    corecore