132 research outputs found

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Direct measurement of antiferromagnetic domain fluctuations

    Full text link
    Measurements of magnetic noise emanating from ferromagnets due to domain motion were first carried out nearly 100 years ago and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise, but this must be sampled at spatial wavelengths of order several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present the first direct measurement of the fluctuations in the nanometre-scale spin- (charge-) density wave superstructure associated with antiferromagnetism in elemental Chromium. The technique used is X-ray Photon Correlation Spectroscopy, where coherent x-ray diffraction produces a speckle pattern that serves as a "fingerprint" of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micron distances. While the domain wall motion is thermally activated at temperatures above 100K, it is not so at lower temperatures, and indeed has a rate which saturates at a finite value - consistent with quantum fluctuations - on cooling below 40K. Our work is important because it provides an important new measurement tool for antiferromagnetic domain engineering as well as revealing a fundamental new fact about spin dynamics in the simplest antiferromagnet.Comment: 19 pages, 4 figure

    Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA) - as an invasion suppressor of prostate cancer cells.</p> <p>Methods</p> <p>Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA.</p> <p>Results</p> <p>We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment.</p> <p>Conclusions</p> <p>We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.</p

    Climate, history, society over the last millennium in southeast Africa

    Get PDF
    Climate variability has been causally linked to the transformation of society in pre-industrial southeast Africa. A growing critique, however, challenges the simplicity of ideas that identify climate as an agent of past societal change; arguing instead that the value of historical climate–society research lies in understanding human vulnerability and resilience, as well as how past societies framed, responded and adapted to climatic phenomena. We work across this divide to present the first critical analysis of climate–society relationships in southeast Africa over the last millennium. To achieve this, we review the now considerable body of scholarship on the role of climate in regional societal transformation, and bring forward new perspectives on climate–society interactions across three areas and periods using the theoretical frameworks of vulnerability and resilience. We find that recent advances in paleoclimatology and archaeology give weight to the suggestion that responses to climate variability played an important part in early state formation in the Limpopo valley (1000–1300), though evidence remains insufficient to clarify similar debates concerning Great Zimbabwe (1300–1450/1520). Written and oral evidence from the Zambezi-Save (1500–1830) and KwaZulu-Natal areas (1760–1828) nevertheless reveals a plurality of past responses to climate variability. These were underpinned by the organization of food systems, the role of climate-related ritual and political power, social networks, and livelihood assets and capabilities, as well as the nature of climate variability itself. To conclude, we identify new lines of research on climate, history and society, and discuss how these can more directly inform contemporary African climate adaptation challenges

    The intraductal approach to the breast: raison d'être

    Get PDF
    Opportunities for the detection, prediction, and treatment of breast cancer exist at three biological levels: systemically via the blood, at the whole organ level, and within the individual ductal lobular structures of the breast. This review covers the evaluation of approaches targeted to the ductal lobular units, where breast cancer begins. Studies to date suggest the presence of 5 to 12 independent ductal lobular systems per breast, each harboring complex cellular fluids contributed by local and systemic processes. New techniques for accessing and interrogating these systems offer the potential to gauge the microenvironment of the breast and distill biological risk profiles

    Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans

    Get PDF
    GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10−4) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry

    Knowledge-Driven Analysis Identifies a Gene–Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Populations

    Get PDF
    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene–gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein–protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected Pc = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene–gene interaction in the European American cohorts from the Framingham Heart Study (Pc = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; Pc = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (Pc = 0.004) and in the Hispanic American sample from MESA (Pc = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene–gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar

    Genome-wide association and functional follow-up reveals new loci for kidney function

    Get PDF
    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD
    corecore