10 research outputs found

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p

    Two new species of zooplanktivorous haplochromine cichlids from Lake Victoria, Tanzania

    Get PDF
    Two new species of zooplanktivorous haplochromine cichlids from Lake Victoria, Tanzania, are described and illustrated. These species closely resemble each other. Their affinities to other zooplanktivorous haplochromines from Lake Victoria are discussed. Haplochromis argens sp. n., which featured under nicknames (mainly H. “argens”) in more than 50 papers, was caught both in the Mwanza Gulf and the Emin Pasha Gulf, whereas H. goldschmidti sp. n. was only found in the Emin Pasha Gulf. Of the latter species only males are available, but it seems unlikely that it represents a case of male colour polymorphism as several presumably unrelated characters differ in sympatry between the two species, suggesting that there is no gene flow. Statistical analysis revealed that the overall difference between the two species is greater than that between the populations from the two locations. Body depth of the two species in sympatry in the Emin Pasha Gulf was more similar than that of H. goldschmidti sp. n. and the allopatric population of H. argens sp. n. from the Mwanza Gulf, which may indicate an overall environmental effect. However, several measurements related to the width of snout and mouth differed more between the populations of the two species in sympatry than between the allopatric populations. In contrast to a group of zooplanktivorous species that recovered successfully after environmental changes in the lake, H. argens sp. n. is among a group that became extremely rare and probably is in danger of extinction; the conservation status of H. goldschmidti sp. n. is currently unknown

    Skeletal Effects of the Saturated 3-Thia Fatty Acid Tetradecylthioacetic Acid in Rats

    Get PDF
    This study explores the skeletal effects of the peroxisome proliferator activated receptor (PPAR)pan agonist tetradecylthioacetic acid (TTA). Rats, without (Study I) and with ovariectomy (OVX) or sham operation (Study II), were given TTA or vehicle daily for 4 months. Bone markers in plasma, whole body and femoral bone mineral density and content (BMD and BMC), and body composition were examined. Histomorphometric and biomechanical analyses (Study I) and biomechanical and μCT analyses (Study II) of the femur were performed. Normal rats fed TTA had higher femoral BMD and increased total and cortical area in femur compared to controls. The ovariectomized groups had decreased BMD and impaired microarchitecture parameters compared to SHAM. However, the TTA OVX group maintained femoral BMC, trabecular thickness in the femoral head, and cortical volume in the femoral metaphysis as SHAM. TTA might increase BMD and exert a light preventive effect on estrogen-related bone loss in rats

    Skeletal Effects of the Saturated 3-Thia Fatty Acid Tetradecylthioacetic Acid in Rats

    No full text
    This study explores the skeletal effects of the peroxisome proliferator activated receptor (PPAR)pan agonist tetradecylthioacetic acid (TTA). Rats, without (Study I) and with ovariectomy (OVX) or sham operation (Study II), were given TTA or vehicle daily for 4 months. Bone markers in plasma, whole body and femoral bone mineral density and content (BMD and BMC), and body composition were examined. Histomorphometric and biomechanical analyses (Study I) and biomechanical and μCT analyses (Study II) of the femur were performed. Normal rats fed TTA had higher femoral BMD and increased total and cortical area in femur compared to controls. The ovariectomized groups had decreased BMD and impaired microarchitecture parameters compared to SHAM. However, the TTA OVX group maintained femoral BMC, trabecular thickness in the femoral head, and cortical volume in the femoral metaphysis as SHAM. TTA might increase BMD and exert a light preventive effect on estrogenrelated bone loss in rats

    Functional and evolutionary consequences of cranial fenestration in birds

    No full text
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group

    Data from: Functional and evolutionary consequences of cranial fenestration in birds

    No full text
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modelling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group

    Gussekloo_etal_Fenestration_Evolution

    No full text
    Finite Element Models in ANSYS format and measurement data of the in vivo experiment. For further information, please see included README files

    Data from: Functional and evolutionary consequences of cranial fenestration in birds

    No full text
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modelling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group
    corecore