284 research outputs found

    Accuracy of Risk Estimates from the iPrevent Breast Cancer Risk Assessment and Management Tool.

    Get PDF
    BACKGROUND: iPrevent is an online breast cancer (BC) risk management decision support tool. It uses an internal switching algorithm, based on a woman's risk factor data, to estimate her absolute BC risk using either the International Breast Cancer Intervention Study (IBIS) version 7.02, or Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm version 3 models, and then provides tailored risk management information. This study assessed the accuracy of the 10-year risk estimates using prospective data. METHODS: iPrevent-assigned 10-year invasive BC risk was calculated for 15 732 women aged 20-70 years and without BC at recruitment to the Prospective Family Study Cohort. Calibration, the ratio of the expected (E) number of BCs to the observed (O) number and discriminatory accuracy were assessed. RESULTS: During the 10 years of follow-up, 619 women (3.9%) developed BC compared with 702 expected (E/O = 1.13; 95% confidence interval [CI] =1.05 to 1.23). For women younger than 50 years, 50 years and older, and BRCA1/2-mutation carriers and noncarriers, E/O was 1.04 (95% CI = 0.93 to 1.16), 1.24 (95% CI = 1.11 to 1.39), 1.13 (95% CI = 0.96 to 1.34), and 1.13 (95% CI = 1.04 to 1.24), respectively. The C-statistic was 0.70 (95% CI = 0.68 to 0.73) overall and 0.74 (95% CI = 0.71 to 0.77), 0.63 (95% CI = 0.59 to 0.66), 0.59 (95% CI = 0.53 to 0.64), and 0.65 (95% CI = 0.63 to 0.68), respectively, for the subgroups above. Applying the newer IBIS version 8.0b in the iPrevent switching algorithm improved calibration overall (E/O = 1.06, 95% CI = 0.98 to 1.15) and in all subgroups, without changing discriminatory accuracy. CONCLUSIONS: For 10-year BC risk, iPrevent had good discriminatory accuracy overall and was well calibrated for women aged younger than 50 years. Calibration may be improved in the future by incorporating IBIS version 8.0b

    Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients

    Get PDF
    A large number of rare sequence variants of unknown clinical significance have been identified in the breast cancer susceptibility genes, BRCA1 and BRCA2. Laboratory-based methods that can distinguish between carriers of pathogenic mutations and non-carriers are likely to have utility for the classification of these sequence variants. To identify predictors of pathogenic mutation status in familial breast cancer patients, we explored the use of gene expression arrays to assess the effect of two DNA–damaging agents (irradiation and mitomycin C) on cellular response in relation to BRCA1 and BRCA2 mutation status. A range of regimes was used to treat 27 lymphoblastoid cell-lines (LCLs) derived from affected women in high-risk breast cancer families (nine BRCA1, nine BRCA2, and nine non-BRCA1/2 or BRCAX individuals) and nine LCLs from healthy individuals. Using an RNA–pooling strategy, we found that treating LCLs with 1.2 µM mitomycin C and measuring the gene expression profiles 1 hour post-treatment had the greatest potential to discriminate BRCA1, BRCA2, and BRCAX mutation status. A classifier was built using the expression profile of nine QRT–PCR validated genes that were associated with BRCA1, BRCA2, and BRCAX status in RNA pools. These nine genes could distinguish BRCA1 from BRCA2 carriers with 83% accuracy in individual samples, but three-way analysis for BRCA1, BRCA2, and BRCAX had a maximum of 59% prediction accuracy. Our results suggest that, compared to BRCA1 and BRCA2 mutation carriers, non-BRCA1/2 (BRCAX) individuals are genetically heterogeneous. This study also demonstrates the effectiveness of RNA pools to compare the expression profiles of cell-lines from BRCA1, BRCA2, and BRCAX cases after treatment with irradiation and mitomycin C as a method to prioritize treatment regimes for detailed downstream expression analysis

    High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium.

    Get PDF
    Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance.ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. CNIO-BCS was supported by the Genome Spain Foundation, the Red Tematica de Investigacion Cooperativa en Cancer and grants from the Asociacion Espaola Contra el Cancer and the Fondo de Investigacion Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The ESTHER study was supported by a grant from the Baden Wurttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 106332, 108253, 108419], the Hamburg Cancer Society, the German Cancer Research Center (DKFZ) and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402]. The MCBCS was supported by an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, the Mayo Clinic Breast Cancer Registry and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. ORIGO authors thank E. Krol-Warmerdam, and J. Blom; The contributing studies were funded by grants from the Dutch Cancer Society (UL1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SEARCH is funded by programme grant from Cancer Research UK [C490/A10124. C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. Part of this work was supported by the European Community’s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009223175) (COGS). The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. We acknowledge funds from Breakthrough Breast Cancer, UK, in support of MGC at the time this work was carried out and funds from the Cancer Research, UK, in support of MA.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cjp2.4

    Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers.

    Get PDF
    INTRODUCTION: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. METHODS: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analyzed in vitro and in vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2,754 carriers. RESULTS: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterized three cis-regulatory SNPs located at the promoter and two intronic regulatory elements which affect the binding of the transcription factors C/EBPα, HMGA1, D-binding protein (DBP) and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele hazard ratio (HR) = 0.85, 95% confidence interval (CI) = 0.72 to 1.00, P-trend = 0.048). CONCLUSIONS: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2 which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?

    Get PDF
    Introduction: Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods: We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results: Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion: These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer

    Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium.

    Get PDF
    BACKGROUND: Tobacco smoking and alcohol consumption have been intensively studied in the general population to assess their effects on the risk of breast cancer, but very few studies have examined these effects in BRCA1 and BRCA2 mutation carriers. Given the high breast cancer risk for mutation carriers and the importance of BRCA1 and BRCA2 in DNA repair, better evidence on the associations of these lifestyle factors with breast cancer risk is essential. METHODS: Using a large international pooled cohort of BRCA1 and BRCA2 mutation carriers, we conducted retrospective (5,707 BRCA1 mutation carriers and 3,525 BRCA2 mutation carriers) and prospective (2,276 BRCA1 mutation carriers and 1,610 BRCA2 mutation carriers) analyses of alcohol and tobacco consumption using Cox proportional hazards models. RESULTS: For both BRCA1 and BRCA2 mutation carriers, none of the smoking-related variables was associated with breast cancer risk, except smoking for more than 5 years before a first full-term pregnancy (FFTP) when compared with parous women who never smoked. For BRCA1 mutation carriers, the HR from retrospective analysis (HRR) was 1.19 [95% confidence interval (CI), 1.02-1.39] and the HR from prospective analysis (HRP) was 1.36 (95% CI, 0.99-1.87). For BRCA2 mutation carriers, smoking for more than 5 years before an FFTP showed an association of a similar magnitude, but the confidence limits were wider (HRR = 1.25; 95% CI, 1.01-1.55 and HRP = 1.30; 95% CI, 0.83-2.01). For both carrier groups, alcohol consumption was not associated with breast cancer risk. CONCLUSIONS: The finding that smoking during the prereproductive years increases breast cancer risk for mutation carriers warrants further investigation. IMPACT: This is the largest prospective study of BRCA mutation carriers to assess these important risk factors

    Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer

    Get PDF
    Abstract: Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in BRCA1 or BRCA2 genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of BRCA1 carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03–6.30, P = 3.1 × 10−9). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics

    Genetic modifiers of CHEK2*1100delC-associated breast cancer risk

    Get PDF
    Purpose: CHEK2*1100delC is a founder variant in European populations that confers a two-to threefold increased risk of breast cancer (BC). Epidemiologic and family studies have suggested that the risk associated with CHEK2*1100delC is modified by other genetic factors in a multiplicative fashion. We have investigated this empirically using data from the Breast Cancer Association Consortium (BCAC). Methods: Using genotype data from 39,139 (624 1100delC carriers) BC patients and 40,063 (224) healthy controls from 32 BCAC studies, we analyzed the combined risk effects of CHEK2*1100delC and 77 common variants in terms of a polygenic risk score (PRS) and pairwise interaction. Results: The PRS conferred odds ratios (OR) of 1.59 (95% CI: 1.212.09) per standard deviation for BC for CHEK2*1100delC carriers and 1.58 (1.55-1.62) for noncarriers. No evidence of deviation from the multiplicative model was found. The OR for the highest quintile of the PRS was 2.03 (0.86-4.78) for CHEK2*1100delC carriers, placing them in the high risk category according to UK NICE guidelines. The OR for the lowest quintile was 0.52 (0.16-1.74), indicating a lifetime risk close to the population average. Conclusion: Our results confirm the multiplicative nature of risk effects conferred by CHEK2*1100delC and the common susceptibility variants. Furthermore, the PRS could identify carriers at a high lifetime risk for clinical actions.Peer reviewe
    • …
    corecore