148 research outputs found

    Reducing water usage with rotary regenerative gas/gas heat exchangers in natural gas-fired power plants with post-combustion carbon capture

    Get PDF
    AbstractIt is possible to greatly mitigate the increase of water usage associated with the addition of carbon capture to fossil fuel power generation. This article presents a first-of-a-kind feasibility study of a series of technology options with rotary regenerative gas/gas heat exchangers for the management of the water balance around post-combustion carbon capture process integrated with CCGT (Combined Cycle Gas Turbine) plants with and without EGR (exhaust gas recirculation). Hybrid cooling configurations with a gas/gas heat exchanger upstream of the direct contact cooler reduce cooling and process water demand by 67% and 35% respectively compared to a wet system where the flue gas is primarily cooled prior to the absorber in larger direct contact coolers. The CO2-depleted gas stream is then reheated above 70 °C with enough buoyancy to rise through the stack. Dry air-cooled configurations, relying on ambient air as the cooling medium, eliminate the use of process and cooling water prior to the absorber and the temperature of the flue gas entering the absorber is unchanged. Rotary regenerative heat exchangers do not introduce significant additional pressure drop and gas leakage from a high CO2 concentration stream to a stream with lower concentration can be minimized to acceptable levels with available strategies using a purge and a scavenging slipstream from the higher pressure flow

    Geochemical detection of carbon dioxide in dilute aquifers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon storage in deep saline reservoirs has the potential to lower the amount of CO<sub>2 </sub>emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO<sub>2 </sub>gas leak into dilute groundwater are important measures for the potential release of CO<sub>2 </sub>to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO<sub>2 </sub>storage reservoir. Specifically, we address the relationships between CO<sub>2 </sub>flux, groundwater flow, detection time and distance. The CO<sub>2 </sub>flux ranges from 10<sup>3 </sup>to 2 × 10<sup>6 </sup>t/yr (0.63 to 1250 t/m<sup>2</sup>/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.</p> <p>Results</p> <p>For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO<sub>2 </sub>into an overlying aquifer because elevated CO<sub>2 </sub>yields a more acid pH than the ambient groundwater. CO<sub>2 </sub>leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO<sub>2 </sub>buoyancy. pH breakthrough curves demonstrate that CO<sub>2 </sub>leaks can be easily detected for CO<sub>2 </sub>flux ≥ 10<sup>4 </sup>t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO<sub>2 </sub>dissolves in the aqueous phase in the lower most permeable unit and does not reach the monitoring well. Sustained pumping in a developed aquifer mixes the CO<sub>2</sub>-affected water with the ambient water and enhances pH signal for small leaks (10<sup>3 </sup>t/yr) and reduces pH signal for larger leaks (≥ 10<sup>4</sup>t/yr).</p> <p>Conclusion</p> <p>The ability to detect CO<sub>2 </sub>leakage from a storage reservoir to overlying dilute groundwater is dependent on CO<sub>2 </sub>solubility, leak flux, CO<sub>2 </sub>buoyancy, and groundwater flow. Our simulations show that the most likely places to detect CO<sub>2 </sub>are at the base of the confining layer near the water table where CO<sub>2 </sub>gas accumulates and is transported laterally in all directions, and downstream of the vertical gas trace where groundwater flow is great enough to transport dissolved CO<sub>2 </sub>laterally. Our simulations show that CO<sub>2 </sub>may not rise high enough in the aquifer to be detected because aqueous solubility and lateral groundwater transport within the lower aquifer unit exceeds gas pressure build-up and buoyancy needed to drive the CO<sub>2 </sub>gas upwards.</p

    Sustainable travel behaviour and the widespread impacts on the local economy

    Get PDF
    Statistics show that unsustainable travel behaviour and global greenhouse gas emissions are growing and due to the perceived indispensable nature of personal travel, shifts to more sustainable modes remain a challenge. Automobility supports sustained local economic growth but also raises issues around safety, health, road fatalities, traffic and congestion, and detrimental environmental impacts. This article addresses the issue of sustainable mobility by investigating how to increase sustainable travel choices and, where this is not possible, ensure existing travel choices and patterns are as environmentally friendly as possible. Existing soft initiatives aimed at increasing sustainable travel behaviour fail to fully acknowledge that travel decisions are made at the individual level and that tailored strategies would be more effective at targeting distinct behavioural patterns. Influencing changes in travel behaviour at the local level demonstrates significant potential where individual behaviour can be influenced if appropriate support at the system level is in place and complies with the needs of individuals. This article demonstrates that, in doing so, this will simultaneously address other areas, such as accessibility, employability, health and sustainable growth, crucial to the establishment and survival of automobility by both supporting local economic growth and achieving reductions in carbon emissions

    Carbon dioxide reduction in the building life cycle: a critical review

    Get PDF
    The construction industry is known to be a major contributor to environmental pressures due to its high energy consumption and carbon dioxide generation. The growing amount of carbon dioxide emissions over buildings’ life cycles has prompted academics and professionals to initiate various studies relating to this problem. Researchers have been exploring carbon dioxide reduction methods for each phase of the building life cycle – from planning and design, materials production, materials distribution and construction process, maintenance and renovation, deconstruction and disposal, to the material reuse and recycle phase. This paper aims to present the state of the art in carbon dioxide reduction studies relating to the construction industry. Studies of carbon dioxide reduction throughout the building life cycle are reviewed and discussed, including those relating to green building design, innovative low carbon dioxide materials, green construction methods, energy efficiency schemes, life cycle energy analysis, construction waste management, reuse and recycling of materials and the cradle-to-cradle concept. The review provides building practitioners and researchers with a better understanding of carbon dioxide reduction potential and approaches worldwide. Opportunities for carbon dioxide reduction can thereby be maximised over the building life cycle by creating environmentally benign designs and using low carbon dioxide materials

    Methodology and applications of city level CO2 emission accounts in China

    Get PDF
    China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2 emissions in China and thus are considered as the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, the emission inventory construction of Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emissions inventories for Chinese cities based on energy balance table. The newly constructed emission inventory is compiled in terms of the definition provided by the IPCC territorial emission accounting approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is corresponding with the national and provincial inventory. In the study, we applied the methods to compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy and goal research in the future
    corecore