503 research outputs found
Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex
Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10–20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30–40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys
The influence of semantic and phonological factors on syntactic decisions: An event-related brain potential study
During language production and comprehension, information about a word's syntactic properties is sometimes needed. While the decision about the grammatical gender of a word requires access to syntactic knowledge, it has also been hypothesized that semantic (i.e., biological gender) or phonological information (i.e., sound regularities) may influence this decision. Event-related potentials (ERPs) were measured while native speakers of German processed written words that were or were not semantically and/or phonologically marked for gender. Behavioral and ERP results showed that participants were faster in making a gender decision when words were semantically and/or phonologically gender marked than when this was not the case, although the phonological effects were less clear. In conclusion, our data provide evidence that even though participants performed a grammatical gender decision, this task can be influenced by semantic and phonological factors
La utilización del vídeo para la enseñanza de conceptos básicos (calor y temperatura)
The goal of one of the inquiries implemented in the ANTEC Project (Aplicación de las Nuevas Tecnologías a la Enseñanza de las Ciencias) was to analyze the use of vídeotapes as a means to teach Sciences. In this paper we present the use of vídeotapes related to Heat and Temperature Units, in classrooms with students who were 16 years old. We expected to modify their concepts about these subjects. The results suggest the improvement of students' concepts and vocabulary, although it was not the same with the application of scientific knowledge to everyday events
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
Age-related decline in associative learning in healthy Chinese adults
10.1371/journal.pone.0080648PLoS ONE811-POLN
Recommended from our members
Memory development: implications for adults recalling childhood experiences in the courtroom
Adults frequently provide compelling, detailed accounts of early childhood experiences in the courtroom. Judges and jurors are asked to decide guilt or innocence based solely on these decades-old memories using 'common sense' notions about memory. However, these notions are not in agreement with findings from neuroscientific and behavioural studies of memory development. Without expert guidance, judges and jurors may have difficulty in properly adjudicating the weight of memory evidence in cases involving adult recollections of childhood experiences
The Human Parahippocampal Region: I. Temporal Pole Cytoarchitectonic and MRI Correlation
The temporal pole (TP) is the rostralmost portion of the human temporal lobe. Characteristically, it is only present in human and nonhuman primates. TP has been implicated in different cognitive functions such as emotion, attention, behavior, and memory, based on functional studies performed in healthy controls and patients with neurodegenerative diseases through its anatomical connections (amygdala, pulvinar, orbitofrontal cortex). TP was originally described as a single uniform area by Brodmann area 38, and von Economo (area TG of von Economo and Koskinas), and little information on its cytoarchitectonics is known in humans. We hypothesize that 1) TP is not a homogenous area and we aim first at fixating the precise extent and limits of temporopolar cortex (TPC) with adjacent fields and 2) its structure can be correlated with structural magnetic resonance images. We describe here the macroscopic characteristics and cytoarchitecture as two subfields, a medial and a lateral area, that constitute TPC also noticeable in 2D and 3D reconstructions. Our findings suggest that the human TP is a heterogeneous region formed exclusively by TPC for about 7 mm of the temporal tip, and that becomes progressively restricted to the medial and ventral sides of the TP. This cortical area presents topographical and structural features in common with nonhuman primates, which suggests an evolutionary development in human species
Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide
This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus
The postembryonic development of the ocellar system of Triatoma infestans Klug (Heteroptera: Reduviidae)
Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex
We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase
(GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel
confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization
analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we
focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal
cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern,
yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger
3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed
than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive
fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas
coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted
coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2
and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal
cortex belong to at least two subpopulations of CR-neurons: a glutamatergic excitatory and a GABAergic inhibitory
- …
