71 research outputs found
Biochemical parameters of silver catfish (Rhamdia quelen) after transport with eugenol or essential oil of Lippia alba added to the water
The transport of live fish is a routine practice in aquaculture and constitutes a considerable source of stress to the animals. The addition of anesthetic to the water used for fish transport can prevent or mitigate the deleterious effects of transport stress. This study investigated the effects of the addition of eugenol (EUG) (1.5 or 3.0 mu L L-1) and essential oil of Lippia alba (EOL) (10 or 20 mu L L-1) on metabolic parameters (glycogen, lactate and total protein levels) in liver and muscle, acetylcholinesterase activity (AChE) in muscle and brain, and the levels of protein carbonyl (PC), thiobarbituric acid reactive substances (TBARS) and nonprotein thiol groups (NPSH) and activity of glutathione-S-transferase in the liver of silver catfish (Rhamdia quelen; Quoy and Gaimard, 1824) transported for four hours in plastic bags (loading density of 169.2 g L-1). The addition of various concentrations of EUG (1.5 or 3.0 mu L L-1) and EOL (10 or 20 mu L L-1) to the transport water is advisable for the transportation of silver catfish, since both concentrations of these substances increased the levels of NPSH antioxidant and decreased the TBARS levels in the liver. In addition, the lower liver levels of glycogen and lactate in these groups and lower AChE activity in the brain (EOL 10 or 20 mu L L-1) compared to the control group indicate that the energetic metabolism and neurotransmission were lower after administration of anesthetics, contributing to the maintenance of homeostasis and sedation status.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Pesquisa e Desenvolvimento Cientifico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); CNPqinfo:eu-repo/semantics/publishedVersio
One particle spectral weight of the three dimensional single band Hubbard model
Dynamic properties of the three-dimensional single-band Hubbard model are
studied using Quantum Monte Carlo combined with the maximum entropy technique.
At half-filling, there is a clear gap in the density of states and well-defined
quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We
find an antiferromagnetically induced weight above the naive Fermi momentum.
Upon hole doping, the chemical potential moves to the top of the lower band
where a robust peak is observed. Results are compared with spin-density-wave
(SDW) mean-field and self consistent Born approximation results, and also with
the infinite dimensional Hubbard model, and experimental photoemission (PES)
for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30
correcte
Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model
Slave boson calculations have been carried out in the three-band tJ model for
the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode
phonons. Phonon-induced Van Hove nesting leads to a phase separation between a
hole-doped domain and a (magnetic) domain near half filling, with long-range
Coulomb forces limiting the separation to a nanoscopic scale. Strong
correlation effects pin the Fermi level close to, but not precisely at the Van
Hove singularity (VHS), which can enhance the tendency to phase separation. The
resulting dispersions have been calculated, both in the uniform phases and in
the phase separated regime. In the latter case, distinctly different
dispersions are found for large, random domains and for regular (static)
striped arrays, and a hypothetical form is presented for dynamic striped
arrays. The doping dependence of the latter is found to provide an excellent
description of photoemission and thermodynamic experiments on pseudogap
formation in underdoped cuprates. In particular, the multiplicity of observed
gaps is explained as a combination of flux phase plus charge density wave (CDW)
gaps along with a superconducting gap. The largest gap is associated with VHS
nesting. The apparent smooth evolution of this gap with doping masks a
crossover from CDW-like effects near optimal doping to magnetic effects (flux
phase) near half filling. A crossover from large Fermi surface to hole pockets
with increased underdoping is found. In the weakly overdoped regime, the CDW
undergoes a quantum phase transition (), which could be obscured
by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes,
esp. in Sect. 3, Figs 1-4,6 replace
The surface detector array of the Telescope Array experiment
The Telescope Array (TA) experiment, located in the western desert of
Utah,USA, is designed for observation of extensive air showers from extremely
high energy cosmic rays. The experiment has a surface detector array surrounded
by three fluorescence detectors to enable simultaneous detection of shower
particles at ground level and fluorescence photons along the shower track. The
TA surface detectors and fluorescence detectors started full hybrid observation
in March, 2008. In this article we describe the design and technical features
of the TA surface detector.Comment: 32 pages, 17 figure
New air fluorescence detectors employed in the Telescope Array experiment
Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been
observing ultra high energy cosmic rays to understand their origins. The
experiment involves a surface detector (SD) array and three fluorescence
detector (FD) stations. FD stations, installed surrounding the SD array,
measure the air fluorescence light emitted from extensive air showers (EASs)
for precise determination of their energies and species. The detectors employed
at one of the three FD stations were relocated from the High Resolution Fly's
Eye experiment. At the other two stations, newly designed detectors were
constructed for the TA experiment. An FD consists of a primary mirror and a
camera equipped with photomultiplier tubes. To obtain the EAS parameters with
high accuracies, understanding the FD optical characteristics is important. In
this paper, we report the characteristics and installation of new FDs and the
performances of the FD components. The results of the monitored mirror
reflectance during the observation time are also described in this report.Comment: 44 pages, 23 figures, submitted to NIM-
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
A model for non-volatile electronic memory devices with strongly correlated materials
The behavior of a model for non-volatile electronic memory devices with strongly correlated materials, was investigated. The domain structure assumed in this model is motivated from a rather universal aspect of strongly correlated perovskites such as the spatial inhomogeneity that occurs at the nanoscale. It is observed that the switching mechanism is related hysteresis in the I-V characteristics and that the hysteresis is itself related to a conjectured metal-insulator transition at the level of small domains. The results show that the domains that receive charge are subject to an 'effective doping' that may drive them across a boundary between two distinct electronic phases.Fil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Inoue, I.H.. National Institute Of Advanced Industrial Science And Technology; Estados UnidosFil: Granados Sanchez, Maria Jimena. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin
Benzocaína e eugenol como anestésicos para o quinguio (Carassius auratus)
Avaliaram-se os tempos de indução e recuperação de quinguios (Carassius auratus) expostos a dois anestésicos, eugenol e benzocaína. Foram utilizados 128 juvenis com peso médio de 2,07±0,53g e comprimento total médio de 5,51±0,56cm. A benzocaína mostrou ser mais eficiente do que o eugenol em relação ao tempo, tanto para indução ao coma quanto para a recuperação à fuga e também no que diz respeito à sobrevivência. As doses de benzocaína com melhores resultados foram de 87,5 e 100mg.L-1. O eugenol proporcionou demora na indução e na recuperação dos animais, além de ter apresentado mortalidades quando as doses anestésicas foram elevadas
- …