54 research outputs found

    The Toronto Concussion Study: a prospective investigation of characteristics in a cohort of adults from the general population seeking care following acute concussion, 2016–2020

    Get PDF
    PurposeThere is limited research regarding the characteristics of those from the general population who seek care following acute concussion.MethodsTo address this gap, a large cohort of 473 adults diagnosed with an acute concussion (female participants = 287; male participants = 186) was followed using objective measures prospectively over 16 weeks beginning at a mean of 5.1 days post-injury.ResultsFalls were the most common mechanism of injury (MOI) (n = 137, 29.0%), followed by sports-related recreation (n = 119, 25.2%). Male participants were more likely to be injured playing recreational sports or in a violence-related incident; female participants were more likely to be injured by falling. Post-traumatic amnesia (PTA) was reported by 80 participants (16.9 %), and loss of consciousness (LOC) was reported by 110 (23.3%). In total, 54 participants (11.4%) reported both PTA and LOC. Male participants had significantly higher rates of PTA and LOC after their injury compared to their female counterparts. Higher initial symptom burden was associated with a longer duration of recovery for both male and female participants. Female participants had more symptoms and higher severity of symptoms at presentation compared to male participants. Female participants were identified to have a longer recovery duration, with a mean survival time of 6.50 weeks compared to 5.45 weeks in male participants (p < 0.0001). A relatively high proportion of female and male participants in this study reported premorbid diagnoses of depression and anxiety compared to general population characteristics.ConclusionAlthough premorbid diagnoses of depression and/or anxiety were associated with higher symptom burden at the initial visit, the duration of symptoms was not directly associated with a pre-injury history of psychological/psychiatric disturbance. This cohort of adults, from the general population, seeking care for their acute concussion attained clinical and functional recovery over a period of 4–12 weeks

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Force Plate Assessment of Quiet Standing Balance Control: Perspectives on Clinical Application within Stroke Rehabilitation

    No full text
    Assessment of balance control is essential to guide physical rehabilitation poststroke. However, current observational assessment tools available to physiotherapists provide limited information about underlying dyscontrol. This paper describes a force plate-based assessment of quiet standing balance control that we have implemented for individuals attending inpatient stroke rehabilitation. The assessment uses two force plates to measure location of ground reaction forces to maintain stability in quiet standing in five conditions (eyes open, eyes closed, standing symmetrically, and maximal loading on the less-affected and more-affected limbs). Measures of interest are variability of the centers of pressure under each foot and both feet combined, weight-bearing asymmetry, and correlation of center of pressure fluctuations between limbs. We present representative values for the above-mentioned measures and case examples to illustrate how the assessment can reveal patient-specific balance control problems and direct treatment. We identify limitations to our current assessment and recommendations for future research

    Determinants of limb preference for initiating compensatory stepping poststroke

    No full text
    Objective: To investigate the determinants of limb preference for initiating compensatory stepping post-stroke. Design: Retrospective chart review. Setting: In-patient rehabilitation. Participants: Convenience sample of 49 individuals admitted to in-patient rehabilitation with post-stroke hemiparesis. Interventions: Not applicable. Main outcome measures: Compensatory stepping responses were evoked using a lean-and-release postural perturbation. The limb used to initiate compensatory stepping was determined. The relationships between stepping with the paretic limb and pre-morbid limb dominance, weight-bearing on the paretic limb in quiet standing, ability to bear weight on the paretic limb, pre-perturbation weight bearing on the paretic limb, and lower-limb motor recovery scores were determined. Results: The majority (59.1%) of responses were steps initiated with the non-paretic limb. Increased lower-limb motor recovery scores and pre-perturbation weight-bearing on the non-paretic limb were significantly related to increased frequency of stepping with the paretic limb. When the preferred limb was physically blocked, an inappropriate response was initiated in 21% of trials (i.e. non-step responses or an attempt to step with the blocked limb). Conclusions: This study reveals the challenges that individuals with post-stroke hemiparesis face when executing compensatory stepping responses to prevent a fall following a postural perturbation. The inability or challenges to executing a compensatory step with the paretic limb may increase the risk for falls post-stroke.This work was supported by the Heart and Stroke Foundation Centre for Stroke Recovery, the Heart and Stroke Foundation of Canada, the Canadian Institutes of Health Research, and the Canadian Stroke Network. We also acknowledge the support of Toronto Rehabilitation Institute, who receives funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long-Term Care in Ontario

    Timing of reactive stepping among individuals with sub-acute stroke: effects of ‘single-task’ and ‘dual-task’ conditions

    Get PDF
    AbstractPerformance decrements in balance tasks are often observed when a secondary cognitive task is performed simultaneously. This study aimed to determine whether increased cognitive load resulted in altered reactive stepping in individuals with sub-acute stroke, compared to a reactive stepping trial with no secondary task. The secondary purpose was to determine whether differences existed between the first usual-response trial, subsequent usual-response trials, and the dual-task condition. Individuals with sub-acute stroke were exposed to external perturbations to elicit reactive steps. Perturbations were performed under a usual-response (single-task) and dual-task condition. Measures of step timing and number of steps were based on force plate and video data, respectively; these measures were compared between the usual-response and dual-task trials, and between the first usual-response trial, later usual-response trials (trials 2–5) and a dual-task trial. A longer time of unloading onset and greater number of steps were identified for the first usual-response trial compared to later usual-response trials. No significant differences were identified between usual-response and dual-task trials. Although improvements were observed from the first to subsequent usual-response lean-and-release trials, performance then tended to decrease with the introduction of the dual-task condition. These findings suggest that when introduced after usual-response trials, the dual-task trial may represent the first trial of a new condition, which may be beneficial in reducing the potential for adaptation that may occur after multiple repetitions of a reactive stepping task. Therefore, these findings may lend support to the introduction of a new condition (i.e. a dual-task trial) in addition to usual-response trials when assessing reactive balance in individuals with stroke

    Relationship between asymmetry of quiet standing balance control and walking post-stroke

    No full text
    Spatial and temporal gait asymmetry is common after stroke. Such asymmetric gait is inefficient, can contribute to instability and may lead to musculoskeletal injury. However, understanding of the determinants of such gait asymmetry remains incomplete. The current study is focused on revealing if there is a link between asymmetry during the control of standing balance and asymmetry during walking. This study involved review of data from 94 individuals with stroke referred to a gait and balance clinic. Participants completed three tests: (1) walking at their usual pace; (2) quiet standing; and (3) standing with maximal loading of the paretic side. A pressure sensitive mat recorded placement and timing of each footfall during walking. Standing tests were completed on two force plates to evaluate symmetry of weight bearing and contribution of each limb to balance control. Multiple regression was conducted to determine the relationships between symmetry during standing and swing time, stance time, and step length symmetry during walking. Symmetry of antero-posterior balance control and weight bearing were related to swing time and step length symmetry during walking. Weight-bearing symmetry, weight-bearing capacity, and symmetry of antero-posterior balance control were related to stance time symmetry. These associations were independent of underlying lower limb impairment. The results support the hypothesis that impaired ability of the paretic limb to control balance may contribute to gait asymmetry post-stroke. Such work suggests that rehabilitation strategies that increase the contribution of the paretic limb to standing balance control may increase symmetry of walking post-stroke.This study was supported by the Heart and Stroke Foundation Centre for Stroke Recovery. We also acknowledge the support of the Toronto Rehabilitation Institute, who receives funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long-Term Care in Ontario

    Is impaired control of reactive stepping related to falls during inpatient stroke rehabilitation?

    No full text
    Background: Individuals with stroke fall more often than age-matched controls. While many focus on the multi-factorial nature of falls the fundamental problem is likely the ability for an individual to generate reactions to recover from a loss of balance. Stepping reactions to recover balance are particularly important to balance recovery, and individuals with stroke have difficulty executing these responses to prevent a fall following a loss of balance. Objective: The purpose of this study is to determine if characteristics of balance-recovery steps are related to falls during in-patient stroke rehabilitation. Methods: We conducted a retrospective review of individuals with stroke attending in-patient rehabilitation (n=136). Details of falls experienced during in-patient rehabilitation were obtained from incident reports, nursing notes, and patient interviews. Stepping reactions were evoked using a ‘release-from-lean’ postural perturbation. Poisson regression was used to determine characteristics of stepping reactions that were related to increased fall frequency relative to length of stay. Results: Twenty individuals experienced 29 falls during in-patient rehabilitation. The characteristics of stepping reactions significantly related to increased fall rates were: increased frequency of external assistance to prevent a fall to the floor, increased frequency of no-step responses, increased frequency of step responses with inadequate foot clearance, and delayed time to initiate stepping responses. Conclusions: Impaired control of balance-recovery steps is related to increased fall rates during in-patient stroke rehabilitation. This study informs the specific features of stepping reactions that can be targeted with physiotherapy intervention during in-patient rehabilitation to improve dynamic stability control and potentially prevent falls.This study was supported by the Heart and Stroke Foundation Centre for Stroke Recovery and the Ministry of Health and Long-Term Care – Ontario Stroke System. We also acknowledge support of the Toronto Rehabilitation Institute, which receives funding under the Provincial Rehabilitation Research Program from the Ontario Ministry of Health and Long-Term Care
    corecore