6 research outputs found

    Molecular mechanisms underlying cannabis abuse and schizophrenia: Focus on 5-HT2A receptors and Akt/mTOR signaling pathway

    Get PDF
    267 p.Schizophrenia is a chronic and disabling mental illness that affects around 20 million people worldwide. The etiology of the disorder is multifactorial, and different genetic and environmental factors take part in its onset and course. However, the mechanisms underlying this interaction remain poorly understood. Cannabis abuse, especially during adolescence, has been associated with an increased risk of developing schizophrenia as well as with an earlier onset. The main aim of this Thesis consisted in evaluating the molecular mechanisms underlying this relationship, with a focus in two targets previously related with schizophrenia: serotonin 2A receptors (5-HT2AR) and Akt/mTOR signaling pathway. For this purpose, we evaluated (1) the G¿ protein subunits activation exerted by three cannabinoids, including THC in mouse brain cortex, (2) chronic THC effects on psychosis-like states, cortical 5-HT2AR functionality and Akt/mTOR signaling pathway status, (3) the implication of Akt/mTOR signaling pathway in these effects, (4) the Akt/mTOR signaling pathway status in postmortem prefrontal cortex (PFC) of subjects with schizophrenia, and (5) the 5-HT2AR protein expression and Akt functional status in platelets from subjects with a cannabis use disorder, with and without schizophrenia. Most significant results from this Thesis show that chronic THC leads to hyperactive 5-HT2AR functionality in the brain cortex associated with a hyperactive Akt/mTOR signaling and psychosis-like behavior. Disruption of this signaling pathway is also evident in postmortem PFC and platelets of subjects with schizophrenia, and cannabis abuse seems to exert different effects depending on the presence of schizophrenia pathology. Together, this Doctoral Thesis suggests that 5-HT2AR and Akt/mTOR pathway are elements of an interacting mechanism involving chronic cannabis pharmacological effects and schizophrenia pathogenesis

    Estudio del receptor 5HT2A y de la vía Akt/GSK3 como mecanismos moleculares de la psicosis inducida por el consumo crónico de cannabis

    Get PDF
    La esquizofrenia es una enfermedad mental de carácter crónico que afecta aproximadamente al 1% de la población , principalmente con edades comprendidas entre los 15 y 4 5 años . Se trata de una enfermedad de inicio en la adolescencia o comienzo de la madurez y cuyo potencial discapacitante persiste y se agrava a lo largo de la vida. La etiología de la esquizofrenia es multifactorial con evidencias de factores genéticos y ambientales. El carácter hereditario de la esquizofr e nia se ha estimado en un 73 - 90% y los factores genéticos que predisponen a la enfermedad son múltiples y heterogéneos. Los estudios epidemiológicos parecen sugerir que el mayor riesgo de desarrollar esquizofrenia es prod ucto de interacciones genético/ ambi entales (predisposición genética a agresiones ambientales) y del fenómeno de epistasis (fenotipo dependiente de la interacción entre diversos genes). Las manifestaciones clínicas de la esquizofrenia se dividen en síntomas positivos, síntomas negativos y dé ficits cognitivos. A causa de los déficits asociados y de su carácter crónico, la esquizofrenia se encuentra entre las diez causas principales de discapacidad por enfermedad del mundo y según la World Health Organization (2001), se estima que es la quinta enfermedad más costosa para la s ociedad en términos de atención requ erida y pérdida de productividad, con un coste anual en la Unión Europea que supera los 35 mil millones de €, según Andlin - Sobocki y Rössler (2005) . A nivel nacional, en el año 2009 los an tipsicóticos atípicos más empleados (risperidona y olanzapina) se encontraron entre los 8 primeros fármacos que más gasto generaron, con un coste económico superior a 350 millones de euros (Sistema Nacional de Salud (2010)) . Además, según el estudio de Pal mer et al. (2005), el riesgo de muerte prematura en la población esquizofrénica es aproximadamente dos veces mayor en la población general, siendo el suicidio la principal causa de este exceso de mortalidad, con una prevalencia estimada entre 5 - 10%. En est e sentido, se ha estimado que entre el 25% y 50% de los pacientes con esquizofrenia cometen por lo menos un intento de suicidio en su vida , según el estudio llevado a cabo por Meltzer (2002) . Dada su prevalencia, la tendencia a la cronicidad y el riesgo su icida de pacientes con esquizofrenia así como los elevados costes socio - sanitarios, la investigación de esta enfermedad es un objetivo prioritario de los sistemas de salud mundiale

    The endocannabinoid system in mental disorders: Evidence from human brain studies

    Get PDF
    Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders. Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CBI receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)

    Cannabis use selectively modulates circulating biomarkers in the blood of schizophrenia patients

    Get PDF
    Cannabis use disorder is frequent in schizophrenia patients, and it is associated with an earlier age of onset and poor schizophrenia prognosis. Serotonin 2A receptors (5-HT2AR) have been involved in psychosis and, like Akt kinase, are known to be modulated by THC. Likewise, endocannabinoid system dysregulation has been suggested in schizophrenia. The presence of these molecules in blood makes them interesting targets, as they can be evaluated in patients by a minimally invasive technique. The aim of the present study was to evaluate 5-HT2AR protein expression and the Akt functional status in platelet homogenates of subjects diagnosed with schizophrenia, cannabis use disorder, or both conditions, compared with age- and sex-matched control subjects. Additionally, endocannabinoids and pro-inflammatory interleukin-6 (IL-6) levels were also measured in the plasma of these subjects. Results showed that both platelet 5-HT2AR and the active phospho (Ser473)Akt protein expression were significantly increased in schizophrenia subjects, whereas patients with a dual diagnosis of schizophrenia and cannabis use disorder did not show significant changes. Similarly, plasma concentrations of anandamide and other lipid mediators such as PEA and DEA, as well as the pro-inflammatory IL-6, were significantly increased in schizophrenia, but not in dual subjects. Results demonstrate that schizophrenia subjects show different circulating markers pattern depending on the associated diagnosis of cannabis use disorder, supporting the hypothesis that there could be different underlying mechanisms that may explain clinical differences among these groups. Moreover, they provide the first preliminary evidence of peripherally measurable molecules of interest for bigger prospective studies in these subpopulations.Eusko Jaurlaritza, Grant/Award Numbers: 2019111082, IT1512/22, ITIT1211-19; Ministerio de Sanidad, Grant/Award Number: PNSD2019I021; Spanish Ministry of Science and Innovation, Grant/Award Number: PID2019-106404RB-I0

    The endocannabinoid system in mental disorders: Evidence from human brain studies

    Get PDF
    Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders. Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CB1 receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)

    BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    No full text
    Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM) was determined by Scintillation Proximity Assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs
    corecore