28 research outputs found

    The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women's Heart and Health cohort study and a meta-analysis.

    Get PDF
    BACKGROUND: There have been inconsistent results from case-control studies assessing the association of the PON1 Q192R polymorphism with coronary heart disease (CHD). Most studies have included predominantly men and the association in women is unclear. Since lipid levels vary between the sexes the antioxidant effect of PON1 and any genes associated with it may also vary by sex. We have examined the association of the PON1 Q192R polymorphism with CHD in a large cohort of British women and combined the results from our cohort study with those from all other published studies. RESULTS: The distribution of genotypes was the same among women with CHD and those without disease. The odds ratio (95% confidence interval) of having CHD comparing those with either the QR or RR genotype to those with QQ genotype (dominant model of association) was 1.03 (0.89, 1.21) and the per allele odds ratio was 0.98 (0.95, 1.01). In a meta-analysis of this and 38 other published studies (10,738 cases and 17,068 controls) the pooled odds ratio for the dominant effect was 1.14 (1.08, 1.20) and for the per allele effect was 1.10 (1.06, 1.13). There was evidence of small study bias in the meta-analyses and the dominant effect among those studies with 500 or more cases was 1.05 (0.96, 1.15). Ethnicity and reporting of whether the genotyping was done blind to the participants clinical status also contributed to heterogeneity between studies, but there was no difference in effect between studies with 50% or more women compared to those with fewer women and no difference between studies of healthy populations compared to those at high risk (with diabetes, renal disease of familial hypercholesterolaemia). CONCLUSION: There is no robust evidence that the PON1 Q192R polymorphism is associated with CHD risk in Caucasian women or men

    Associations between APOE and low-density lipoprotein cholesterol genotypes and cognitive and physical capability: the HALCyon programme

    Get PDF
    The APOE ε2/3/4 genotype has been associated with low-density lipoprotein cholesterol (LDL-C) and Alzheimer disease. However, evidence for associations with measures of cognitive performance in adults without dementia has been mixed, as it is for physical performance. Associations may also be evident in other genotypes implicated in LDL-C levels. As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, genotypic information was obtained for APOE ε2/3/4, rs515135 (APOB), rs2228671 (LDLR) and rs629301 (SORT1) from eight cohorts of adults aged between 44 and 90+years. We investigated associations with four measures of cognitive (word recall, phonemic fluency, semantic fluency and search speed) and physical capability (grip strength, get up and go/walk speed, timed chair rises and ability to balance) using meta-analyses. Overall, little evidence for associations between any of the genotypes and measures of cognitive capability was observed (e.g. pooled beta for APOE ε4 effect on semantic fluency z score=- 0.02; 95% CI=- 0.05 to 0.02; p value=0.3; n=18,796). However, there was borderline evidence within studies that negative effects of APOE ε4 on nonverbal ability measures become more apparent with age. Few genotypic associations were observed with physical capability measures. The findings from our large investigation of middle-aged to older adults in the general population suggest that effects of APOE on cognitive capability are at most modest and are domain- and age-specific, while APOE has little influence on physical capability. In addition, other LDL-C-related genotypes have little impact on these traits. © The Author(s) 2014

    Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool 'CubeX'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of a haplotype comprising one allele at each of two loci can be expressed as a cubic equation (the 'Hill equation'), the solution of which gives that frequency. Most haplotype and linkage disequilibrium analysis programs use iteration-based algorithms which substitute an estimate of haplotype frequency into the equation, producing a new estimate which is repeatedly fed back into the equation until the values converge to a maximum likelihood estimate (expectation-maximisation).</p> <p>Results</p> <p>We present a program, "CubeX", which calculates the biologically possible exact solution(s) and provides estimated haplotype frequencies, D', r<sup>2 </sup>and <it>χ</it><sup>2 </sup>values for each. CubeX provides a "complete" analysis of haplotype frequencies and linkage disequilibrium for a pair of biallelic markers under situations where sampling variation and genotyping errors distort sample Hardy-Weinberg equilibrium, potentially causing more than one biologically possible solution. We also present an analysis of simulations and real data using the algebraically exact solution, which indicates that under perfect sample Hardy-Weinberg equilibrium there is only one biologically possible solution, but that under other conditions there may be more.</p> <p>Conclusion</p> <p>Our analyses demonstrate that lower allele frequencies, lower sample numbers, population stratification and a possible |D'| value of 1 are particularly susceptible to distortion of sample Hardy-Weinberg equilibrium, which has significant implications for calculation of linkage disequilibrium in small sample sizes (eg HapMap) and rarer alleles (eg paucimorphisms, q < 0.05) that may have particular disease relevance and require improved approaches for meaningful evaluation.</p

    A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.

    Get PDF
    Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance

    Refining associations between TAS2R38 diplotypes and the 6-n-propylthiouracil (PROP) taste test: findings from the Avon Longitudinal Study of Parents and Children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations have highlighted the importance of genetic variation in the determination of bitter tasting ability, however have left unaddressed questions as to within group variation in tasting ability or the possibility of genetic prescription of intermediate tasting ability. Our aim was to examine the relationships between bitter tasting ability and variation at the <it>TAS2R38 </it>locus and to assess the role of psychosocial factors in explaining residual, within group, variation in tasting ability.</p> <p>Results</p> <p>In a large sample of children from the Avon Longitudinal Study of Parents and Children, we confirmed an association between bitter compound tasting ability and <it>TAS2R38 </it>variation and found evidence of a genetic association with intermediate tasting ability. Antisocial behaviour, social class and depression showed no consistent relationship with the distribution of taste test scores.</p> <p>Conclusion</p> <p>Factors which could influence a child's chosen taste score, extra to taste receptor variation, appeared not to show relationships with test score. Observed spread in the distribution of the taste test scores <it>within </it>hypothesised taster groups, is likely to be, or at least in part, due to physiological differentiation regulated by other genetic contributors. Results confirm relationships between genetic variation and bitter compound tasting ability in a large sample, and suggest that <it>TAS2R38 </it>variation may also be associated with intermediate tasting ability.</p

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    Lipids, obesity and gallbladder disease in women: insights from genetic studies using the cardiovascular gene-centric 50K SNP array

    Get PDF
    Gallbladder disease (GBD) has an overall prevalence of 10-40% depending on factors such as age, gender, population, obesity and diabetes, and represents a major economic burden. Although gallstones are composed of cholesterol by-products and are associated with obesity, presumed causal pathways remain unproven, although BMI reduction is typically recommended. We performed genetic studies to discover candidate genes and define pathways involved in GBD. We genotyped 15,241 women of European ancestry from three cohorts, including 3216 with GBD, using the Human cardiovascular disease (HumanCVD) BeadChip containing up to ~ 53,000 single-nucleotide polymorphisms (SNPs). Effect sizes with P-values for development of GBD were generated. We identify two new loci associated with GBD, GCKR rs1260326:T>C (P = 5.88 × 10(-7), ß = -0.146) and TTC39B rs686030:C>A (P = 6.95 x 10(-7), ß = 0.271) and detect four independent SNP effects in ABCG8 rs4953023:G>A (P=7.41 × 10(-47), ß = 0.734), ABCG8 rs4299376:G(>)T (P = 2.40 × 10(-18), ß = 0.278), ABCG5 rs6544718:T>C (P = 2.08 × 10(-14), ß = 0.044) and ABCG5 rs6720173:G>C (P = 3.81 × 10(-12), ß(=)0.262) in conditional analyses taking genotypes of rs4953023:G>A as a covariate. We also delineate the risk effects among many genotypes known to influence lipids. These data, from the largest GBD genetic study to date, show that specific, mainly hepatocyte-centred, components of lipid metabolism are important to GBD risk in women. We discuss the potential pharmaceutical implications of our findings

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Homogeneous assay of rs4343, an ACE I/D proxy, and an analysis in the British Women's Heart and Health Study (BWHHS).

    Get PDF
    Current literature suggests that ACE SNP rs4343, ACE 2350A>G in exon 17, T202T, may be the best proxy for the ACE Alu I/D whereas rs4363 and rs4362 may be slightly stronger predictors of ACE levels. Considering reported difficulties in genotyping ACE I/D and stronger associations of rs4343 than ACE I/D with plasma ACE levels in Africans, and suitability of rs4343 for allelic mRNA (cDNA) studies, we developed and validated a liquid phase assay for rs4343, which has advantage on both functional and technical grounds. We confirmed that rs4343, is in near perfect linkage disequilibrium (D'=1, r2=0.88, n=64) with ACE I/D in Europeans (A and G alleles of rs4343 marking insertion and deletion alleles of ACE I/D respectively). We then studied its association with metabolic and cardiovascular traits in 3253 British women (60-79 years old). Apart from a nominal trend of association with diastolic blood pressure (p anova=0.08; p trend=0.05), no other associations were observed. A post-hoc vascular and general phenome scan revealed no further associations. We conclude that ACE I/D is not a major determinant of metabolic and cardiovascular traits in this population. Liquid phase genotyping of SNP rs4343 may be preferable to gel based ACE I/D genotyping both for technical and functional reasons
    corecore