938 research outputs found

    Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures

    Get PDF
    Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed

    Evaluating the thermal comfort performance of heating systems using a thermal manikin with human thermoregulatory control

    Get PDF
    © International Society of the Built Environment. © The Author(s) 2014. The evaluation of the local thermal comfort and application of thermal manikins can further assist the design and selection of heating systems. This study aimed at evaluating the thermal comfort performance of different heating systems using a newly developed thermal manikin with an enhanced thermal control. The heating systems for a workstation, included a conventional radiator (convector) mounted under the window, heated floor in the occupied zone and an infrared heater mounted to the ceiling. The experiments were conducted in a test room with a façade attached to a climate chamber to simulate outdoor winter conditions. In these experiments, the supplied power for the different systems was kept constant to independently quantify the differences in their thermal comfort performance at same energy consumption. The thermal manikin was deployed in the occupied zone to evaluate the local and overall thermal comfort under each system using the equivalent temperature (Teq) approach. The thermoregulatory control used in the manikin operation is based on a model of human thermoregulation that interacts accurately with the surrounding environment through real-time measurements. The results showed that at the same energy consumption of the different systems, the variations in local thermal comfort levels were up to 1 on the comfort scale

    Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Get PDF
    BACKGROUND: Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. METHODS: Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H(2)O(2)) and 0.45% peracetic acid. RESULTS: The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log(10)) population (n cycles). To kill 90% of the initial population (or one log(10 )cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. CONCLUSION: The contact time of 180 min of the system with the mixture of H(2)O(2)+ peracetic acid, a total theoretical reduction of 6 log(10 )cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log(10))

    A theoretical introduction to “Combinatory SYBR®Green qPCR Screening”, a matrix-based approach for the detection of materials derived from genetically modified plants

    Get PDF
    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. “Combinatory qPCR SYBR®Green screening” (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBR®GREEN qPCR analysis based on four values: the Ct- and Tm values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, “Prime number tracing”, matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBR®GREEN qPCR methods and through application of a newly developed “prime number”-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product

    Influence of energy density on flexural properties of laser-sintered UHMWPE

    Get PDF
    Ultra High Molecular Weight Polyethylene (UHMWPE) is a semi-crystalline polymer that has remarkable properties of high mechanical properties, excellent wear resistance, low friction and chemical resistance, and it is found in many applications such sporting goods, medical artificial joints, bullet proof jackets and armours, ropes and fishing lines [1]. UHMWPE parts cannot be produced easily by many conventional processes because of its very high melt viscosity resulting from its very long chains [2]. Additive Manufacturing (AM) is moving from being an industrial rapid prototyping process to becoming a mainstream manufacturing process in a wide range of applications. Laser sintering of polymers is one of the AM techniques that is most promising process owing to its ability to produce parts with complex geometries, accurate dimensions, and good mechanical strength [3]. This paper reports attempts to laser-sinter UHMWPE and assesses the effects of laser energy density on the flexural properties of the sintered parts. The properties of the UHMWPE sintered parts were evaluated by performing flexural three point bending tests and were compared in terms of flexural strength, flexural modulus and ductility (deflection). Part dimensions and relative density were evaluated in order to optimise the laser sintering parameters. Thermal analysis of samples was made by differential scanning calorimetry (DSC) for the virgin powder. Results show that flexural strength, modulus and ductility are influenced by laser energy density and flexural strength and modulus of 1.37 MPa and 32.12 MPa respectively are still achievable at a lower laser energy density of 0.016 J/mm2 (Laser power of 6 W). Part dimensions and bulk density are also influenced by laser energy density

    Energy performance of a ventilated façade by simulation with experimental validation

    Full text link
    A model for a building with ventilated façade was created using the software tool TRNSYS, version 17, and airflow parameters were simulated using TRNFlow. The results obtained with the model are compared and validated with experimental data. The temperature distribution along the air cavity was analysed and a chimney effect was observed, which produced the highest temperature gradient on the first floor. The heat flux of the external wall was analysed, and greater temperatures were observed on the external layer and inside the cavity. The model allows to calculate the energy demand of the building façade proposing and evaluating passive strategies. The corresponding office building for computer laboratories located in Valencia (Spain), was monitored for a year. The thermal behaviour of the floating external sheet was analysed using an electronic panel designed for the reading and storage of data. A feasibility study of the recovery of hot air inside the façade into the building was performed. The results obtained showed a lower heating demand when hot air is introduced inside the building, increasing the efficiency of heat recovery equipment.The English revision of this paper was funded by the Universitat Politecnica de Valencia, Spain.Aparicio Fernandez, CS.; Vivancos, J.; Ferrer Gisbert, P.; Royo Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering. 66(1-2):563-570. doi:10.1016/j.applthermaleng.2014.02.041S563570661-
    corecore