985 research outputs found
Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures
Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed
Characterisation of vibration input to flywheel used on urban bus
Vibration induced from road surface has an impact on the durability and reliability of electrical and mechanical components attached on the vehicle. There is little research published relevant to the durability assessment of a flywheel energy recovery system installed on city and district buses. Relevant international standards and legislations were reviewed and large discrepancy was found among them, in addition, there are no standards exclusively developed for kinetic energy recovery systems on vehicles. This paper describes the experimentation of assessment of road surface vibration input to the flywheel on a bus as obtained at the MIRA Proving Ground. Power density spectra have been developed based on the raw data obtained during the experimentation. Validation of this model will be carried out using accelerated life time tests that will be carried out on a shaker rig using an accumulated profile based on the theory of fatigue damage equivalence in time and frequency domain aligned with the model predictions
Effects of atmospheric stability and urban morphology on daytime intra-urban temperature variability for Glasgow, UK
On the application of the stochastic approach in predicting fatigue reliability using Miner's damage rule
The present paper investigates the application of the stochastic approach when the commonly adopted Miner's linear damage rule is implemented, both in its traditional and modified forms to include the presence of a random stress threshold (random fatigue limit), below which the rate of damage accumulation is reduced. Main steps are provided to obtain the simulated distribution of the accumulated damage under variable amplitude loading. When the stochastic approach is applied in the presence of a random fatigue limit, an additional correlation structure, which takes into account the fatigue limit value, must be introduced in the analysis. If the number of cycles to failure under constant amplitude loading is Weibull (Log-Normal) distributed, then the corresponding accumulated damage is Fréchet (Log-Normal) distributed. The effects of the correlation structure on reliability prediction under variable amplitude loading are also investigated. To this aim, several experimental datasets are taken from the literature, covering various metallic materials and variable amplitude block sequences. The results show that the choice of the damage accumulation model is a key factor to value the improvement in the accuracy of reliability predictions introduced by the stochastic approach. Comparison of the predicted number of cycles to failure with experimental data shows that larger errors are non-conservative, regardless of the adopted correlation structure. When the analysis is limited to reliability levels above 80%, for these large non-conservative errors, it is the quantile approach to be closer to actual experimental data, thus limiting the overestimation of component's life. For the experimental datasets considered in the paper, adoption of a stochastic approach would improve the accuracy of Miner's predictions in 10% of case
Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions
Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
Lack of assurance of quality with additively manufactured (AM) parts is a key technological barrier that prevents manufacturers from adopting AM technologies, especially for high-value applications where component failure cannot be tolerated. Developments in process control have allowed significant enhancement of AM techniques and marked improvements in surface roughness and material properties, along with a reduction in inter-build variation and the occurrence of embedded material discontinuities. As a result, the exploitation of AM processes continues to accelerate. Unlike established subtractive processes, where in-process monitoring is now commonplace, factory-ready AM processes have not yet incorporated monitoring technologies that allow discontinuities to be detected in process. Researchers have investigated new forms of instrumentation and adaptive approaches which, when integrated, will allow further enhancement to the assurance that can be offered when producing AM components. The state-of-the-art with respect to inspection methodologies compatible with AM processes is explored here. Their suitability for the inspection and identification of typical material discontinuities and failure modes is discussed with the intention of identifying new avenues for research and proposing approaches to integration into future generations of AM systems
Using trendsetting chefs to design new culinary preparations with the "Penjar" tomato
New food products are normally marketed after research regarding consumers' preferences. As an alternative, we used trendsetting chefs to develop and evaluate products with the traditional, long shelf life,Postprint (published version
A unified statistical model for S-N fatigue curves: probabilistic definition
In recent years, experimental tests exploring the gigacycle fatigue properties of materials suggest the introduction of modifications in well known statistical fatigue life models. Usual fatigue life models, characterized by a single failure mechanism and by the presence of the fatigue limit, have been integrated by models that can take into account the occurrence of two failure mechanisms and do not consider the presence of the fatigue limit. The general case, in which more than two failure mechanisms coexist with the fatigue limit, has not been proposed yet. The paper presents a unified statistical model which can take into account any number of failure mechanisms and the possible presence of the fatigue limit. The case of S-N curves with different fatigue life distributions coexisting for the entire stress range covered by fatigue tests is also considered. The adaptability of the statistical model to the S-N curves proposed in the open literature is demonstrated by qualitative numerical example
Mechanical degradation of biomass wood pellets during long term stockpile storage
This paper quantifies and assesses the mechanical degradation of white wood and steam exploded wood pellets in indoor and outdoor stockpile storage over a twenty-one month period in the UK. The indoor stored steam exploded wood pellets on the surface of the pile only exhibited a 3% decrease in durability after twenty months in storage. The outdoor stored pellets demonstrated much higher levels of mechanical degradation. In the summer period with high relative humidity and temperature, the durability of pellets sampled from the surface of the pile dropped from 92 to 22% after three months in storage with a durability of 10% measured after nine months in storage. The degradation of the pellets from the middle of the pile was more gradual and less severe with a maximum durability drop of 34%. The impact on mechanical properties was significant for the indoor stored white wood pellets with pellets quickly degrading to dust. This study shows that while steam exploded pellets could be stored in covered storage, white wood pellets require a fully enclosed storage environment. Short term outdoor storage of steam exploded pellets could be considered if extended periods of low rainfall and relative humidity can be reliably predicted
Evaluating the thermal comfort performance of heating systems using a thermal manikin with human thermoregulatory control
© International Society of the Built Environment. © The Author(s) 2014. The evaluation of the local thermal comfort and application of thermal manikins can further assist the design and selection of heating systems. This study aimed at evaluating the thermal comfort performance of different heating systems using a newly developed thermal manikin with an enhanced thermal control. The heating systems for a workstation, included a conventional radiator (convector) mounted under the window, heated floor in the occupied zone and an infrared heater mounted to the ceiling. The experiments were conducted in a test room with a façade attached to a climate chamber to simulate outdoor winter conditions. In these experiments, the supplied power for the different systems was kept constant to independently quantify the differences in their thermal comfort performance at same energy consumption. The thermal manikin was deployed in the occupied zone to evaluate the local and overall thermal comfort under each system using the equivalent temperature (Teq) approach. The thermoregulatory control used in the manikin operation is based on a model of human thermoregulation that interacts accurately with the surrounding environment through real-time measurements. The results showed that at the same energy consumption of the different systems, the variations in local thermal comfort levels were up to 1 on the comfort scale
- …
