22 research outputs found

    Local hypoxia is produced at sites of intratumour injection

    Get PDF
    Intratumour injection, commonly used for gene or drug delivery but also associated with needle biopsy or insertion of invasive measuring devices, may damage tumour microvessels. To examine this possibility, SCCVII tumours grown subcutaneously in C3H mice were injected with a 26 gauge needle containing 0.1 ml of the fluorescent dye Hoechst 33342 to label cells lining the track of the needle. Hoechst-labelled cells sorted from these tumours were more sensitive to killing by hypoxic cell cytotoxins (tirapazamine, RSU-1069) and less sensitive to damage by ionizing radiation. Hoechst-labelled cells also bound the hypoxia marker pimonidazole when given by i.p. injection. Intratumour injection transiently increased hypoxia from 18 to 70% in the tumour cells adjacent to the track of the needle. The half-time for return to pre-treatment oxygenation was about 30 min; oxygenation of tumour cells along the track had recovered by 20 h after intratumour injection. This effect could have significant implications for intratumour injection of drugs, cytokines or vectors that are affected by the oxygenation status of the tumour cells as well as potential effects on biodistribution via local microvasculature

    Clinically relevant intronic splicing enhancer mutation in myelin proteolipid protein leads to progressive microglia and astrocyte activation in white and gray matter regions of the brain

    Get PDF
    INTRODUCTION: Mutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2). Point mutations, deletion, and duplication of the PLP1 gene cause PMD/SPG2 with varying clinical presentation. Deletion of an intronic splicing enhancer (ISEdel) within intron 3 of the PLP1 gene is associated with a mild form of PMD. Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild form of PMD has not been defined. METHODS: A PLP-ISEdel knockin mouse was used to examine the behavioral and neuroinflammatory consequences of a deletion within intron 3 of the PLP gene, at two time points (two and four months old) early in the pathological progression. Mice were characterized functionally using the open field task, elevated plus maze, and nesting behavior. Quantitative neuropathological analysis was for markers of astrocytes (GFAP), microglia (IBA1, CD68, MHCII) and axons (APP). The Aperio ScanScope was used to generate a digital, high magnification photomicrograph of entire brain sections. These digital slides were used to quantify the immunohistochemical staining in ten different brain regions to assess the regional heterogeneity in the reactive astrocyte and microglial response. RESULTS: The PLP-ISEdel mice exhibited behavioral deficits in the open field and nesting behavior at two months, which did not worsen by four months of age. A marker of axonal injury (APP) increased from two months to four months of age. Striking was the robust reactive astrocyte and microglia response which was also progressive. In the two-month-old mice, the astrocyte and microglia reactivity was most apparent in white matter rich regions of the brain. By four months of age the gliosis had become widespread and included both white as well as gray matter regions of the brain. CONCLUSIONS: Our results indicate, along with other preclinical models of PMD, that an early reactive glia response occurs following mutations in the PLP gene, which may represent a potentially clinically relevant, oligodendrocyte-independent therapeutic target for PMD
    corecore